可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I need to rotate an image by either 90, 180 or 270 degrees. In OpenCV4Android I can use:
Imgproc.getRotationMatrix2D(new Point(center, center), degrees, 1);
Imgproc.warpAffine(src, dst, rotationMatrix, dst.size());
However, this is a huge bottleneck in my image processing algorithm. Of course, a simple rotation by a multiple of 90 degrees is much simpler than the most general case of warpAffine
, and can be done much more efficiently. For 180 degrees, for instance, I could use:
Core.flip(src, dst, -1);
where -1 means to flip about both horizontal and vertical axes. Is there a similar optimization I could use for 90 or 270 degree rotations?
回答1:
This is the first result when you Google it and none of these solutions really answer the question or is correct or succinct.
Core.rotate(Mat src, Mat dst, Core.ROTATE_90_CLOCKWISE); //ROTATE_180 or ROTATE_90_COUNTERCLOCKWISE
回答2:
I don't know the java api very well, this codes are developed by c++.
The logics should be the same, use transpose + flip to rotate the image with
90n(n belongs to N = -minimum value of int, ....., -3, -2, -1, 0, 1, 2, 3, ..., max value of int)
/*
*@brief rotate image by multiple of 90 degrees
*
*@param source : input image
*@param dst : output image
*@param angle : factor of 90, even it is not factor of 90, the angle
* will be mapped to the range of [-360, 360].
* {angle = 90n; n = {-4, -3, -2, -1, 0, 1, 2, 3, 4} }
* if angle bigger than 360 or smaller than -360, the angle will
* be map to -360 ~ 360.
* mapping rule is : angle = ((angle / 90) % 4) * 90;
*
* ex : 89 will map to 0, 98 to 90, 179 to 90, 270 to 3, 360 to 0.
*
*/
void rotate_image_90n(cv::Mat &src, cv::Mat &dst, int angle)
{
if(src.data != dst.data){
src.copyTo(dst);
}
angle = ((angle / 90) % 4) * 90;
//0 : flip vertical; 1 flip horizontal
bool const flip_horizontal_or_vertical = angle > 0 ? 1 : 0;
int const number = std::abs(angle / 90);
for(int i = 0; i != number; ++i){
cv::transpose(dst, dst);
cv::flip(dst, dst, flip_horizontal_or_vertical);
}
}
Edit : Improve performance, thanks for the comments of TimZaman and the implementation of 1''
void rotate_90n(cv::Mat const &src, cv::Mat &dst, int angle)
{
CV_Assert(angle % 90 == 0 && angle <= 360 && angle >= -360);
if(angle == 270 || angle == -90){
// Rotate clockwise 270 degrees
cv::transpose(src, dst);
cv::flip(dst, dst, 0);
}else if(angle == 180 || angle == -180){
// Rotate clockwise 180 degrees
cv::flip(src, dst, -1);
}else if(angle == 90 || angle == -270){
// Rotate clockwise 90 degrees
cv::transpose(src, dst);
cv::flip(dst, dst, 1);
}else if(angle == 360 || angle == 0 || angle == -360){
if(src.data != dst.data){
src.copyTo(dst);
}
}
}
回答3:
This will rotate an image any number of degrees, using the most efficient means for multiples of 90.
void
rotate_cw(const cv::Mat& image, cv::Mat& dest, int degrees)
{
switch (degrees % 360) {
case 0:
dest = image.clone();
break;
case 90:
cv::flip(image.t(), dest, 1);
break;
case 180:
cv::flip(image, dest, -1);
break;
case 270:
cv::flip(image.t(), dest, 0);
break;
default:
cv::Mat r = cv::getRotationMatrix2D({image.cols/2.0F, image.rows/2.0F}, degrees, 1.0);
int len = std::max(image.cols, image.rows);
cv::warpAffine(image, dest, r, cv::Size(len, len));
break; //image size will change
}
}
But with opencv 3.0, this is done by just via the cv::rotate command:
cv::rotate(image, dest, e.g. cv::ROTATE_90_COUNTERCLOCKWISE);
回答4:
Here is a solution using the Android API. Here, I am using it to rotate images from a camera which could be mounted in various orientations.
if (mCameraOrientation == 270) {
// Rotate clockwise 270 degrees
Core.flip(src.t(), dst, 0);
} else if (mCameraOrientation == 180) {
// Rotate clockwise 180 degrees
Core.flip(src, dst, -1);
} else if (mCameraOrientation == 90) {
// Rotate clockwise 90 degrees
Core.flip(src.t(), dst, 1);
} else if (mCameraOrientation == 0) {
// No rotation
dst = src;
}
回答5:
Here is my Python translation (and thanks to all the posters):
import cv2
def rot90(img, rotflag):
""" rotFlag 1=CW, 2=CCW, 3=180"""
if rotflag == 1:
img = cv2.transpose(img)
img = cv2.flip(img, 1) # transpose+flip(1)=CW
elif rotflag == 2:
img = cv2.transpose(img)
img = cv2.flip(img, 0) # transpose+flip(0)=CCW
elif rotflag ==3:
img = cv2.flip(img, -1) # transpose+flip(-1)=180
elif rotflag != 0: # if not 0,1,2,3
raise Exception("Unknown rotation flag({})".format(rotflag))
return img
回答6:
I wrote this Python version using Numpy
only, which are much faster than using cv2.transpose()
and cv2.flip()
.
def rotate_image_90(im, angle):
if angle % 90 == 0:
angle = angle % 360
if angle == 0:
return im
elif angle == 90:
return im.transpose((1,0, 2))[:,::-1,:]
elif angle == 180:
return im[::-1,::-1,:]
elif angle == 270:
return im.transpose((1,0, 2))[::-1,:,:]
else:
raise Exception('Error')
回答7:
You can rotate image using numpy rot90
function
like
def rotate_image(image,deg):
if deg ==90:
return np.rot90(image)
if deg ==180:
return np.rot90(image,2)
if deg == 270:
return np.rot90(image,-1) #Reverse 90 deg rotation
Hope this help ..
回答8:
Use the numpy.rot90
,if you want 180 degrees,just do it twice.
import numpy as np
import cv2
img = cv2.imread('img.png',1)
cv2.imshow('',img)
cv2.waitKey(0)
img90 = np.rot90(img)
cv2.imshow('',img90)
cv2.waitKey(0)
回答9:
In python:
# import the necessary packages
import numpy as np
import cv2
# initialize the camera and grab a reference to the raw camera capture
vs = cv2.VideoCapture(0)
(ret, image_original) = vs.read()
image_rotated_90 = np.rot90(image_original)
image_rotated_180 = np.rot90(image_rotated_90)
# show the frame and press any key to quit the image frame
cv2.imshow("Frame", image_rotated_180)
cv2.waitKey(0)