Is there any way to create a PartialFunction
except through the case
statement?
I'm curious, because I'd like to express the following (scala pseudo ahead!)...
val bi = BigInt(_)
if (bi.isValidInt) bi.intValue
... as a partial function, and doing
val toInt : PartialFunction[String, Int] = {
case s if BigInt(s).isValidInt => BigInt(s).intValue
}
seems redundant since I create a BigInt
twice.
Not sure I understand the question. But here's my attempt: Why not create an extractor?
object ValidBigInt {
def unapply(s: String): Option[Int] = {
val bi = BigInt(s)
if (bi.isValidInt) Some(bi.intValue) else None
}
}
val toInt: PartialFunction[String, Int] = {
case ValidBigInt(i) => i
}
The other option is (and that may answer the question as to whether one can create PartialFunction
other than with a case
literal):
val toInt = new PartialFunction[String, Int] {
def isDefinedAt(s: String) = BigInt(s).isValidInt
def apply(s: String) = BigInt(s).intValue
}
However since the idea of a partial function is that it's only partially defined, in the end you will still do redundant things -- you need to create a big int to test whether it's valid, and then in the function application you create the big int again...
I saw a project at Github that tried to come around this by somewhat caching the results from isDefinedAt
. If you go down to the benchmarks, you'll see that it turned out to be slower than the default Scala implementation :)
So if you want to get around the double nature of isDefinedAt
versus apply
, you should just go straight for a (full) function that provides an Option[Int]
as result.
I think you're looking for lift/unlift. lift takes a partial function and turns it into a function that returns an Option. Unlift takes a function with one argument that returns an option, and returns a partial function.
import scala.util.control.Exception._
scala> def fn(s: String) = catching(classOf[NumberFormatException]) opt {BigInt(s)}
fn: (s: String)Option[scala.math.BigInt]
scala> val fnPf = Function.unlift(fn)
fnPf: PartialFunction[String,scala.math.BigInt] = <function1>
scala> val fn = fnPf.lift
fn: String => Option[scala.math.BigInt] = <function1>
Closely related, you also want to look at this answer for information about cond and condOpt:
scala> import PartialFunction._
import PartialFunction._
scala> cond("abc") { case "def" => true }
res0: Boolean = false
scala> condOpt("abc") { case x if x.length == 3 => x + x }
res1: Option[java.lang.String] = Some(abcabc)
You can write out a PartialFunction
"longhand" if you'd like:
object pf extends PartialFunction[Int,String] {
def isDefinedAt(in: Int) = in % 2 == 0
def apply(in: Int) = {
if (in % 2 == 0)
"even"
else
throw new MatchError(in + " is odd")
}
Okay, I got this
import java.lang.NumberFormatException
import scala.util.control.Exception._
val toInt: PartialFunction[String, Int] = {
catching(classOf[NumberFormatException]) opt BigInt(_) match {
case Some(bi) if bi.isValidInt => bi.intValue
}
}
How about this?
val toInt: PartialFunction[String, Int] = (s: String) => BigInt(s) match {
case bi if bi.isValidInt => bi.intValue
}