According to C standard:
In the set of translation units and libraries that constitutes an entire program, each
declaration of a particular identifier with
external linkage
denotes the same object or
function. Within one translation unit, each declaration of an identifier with
internal
linkage
denotes the same object or function. Each declaration of an identifier with
no
linkage
denotes a unique entity.
In my example we have three separate declarations with each identifier having a different linkage.So why doesn't this work?
static int a; //a_Internal
int main(void) {
int a; //a_Local
{
extern int a; //a_External
}
return 0;
}
Error:
In function 'main':
Line 9: error: variable previously declared 'static' redeclared 'extern'
Why does compiler insist that I'm redeclaring instead of trying to access external object in another file?
Valid C++ example for reference:
static void f();
static int i = 0; // #1
void g() {
extern void f(); // internal linkage
int i; // #2 i has no linkage
{
extern void f(); // internal linkage
extern int i; // #3 external linkage
}
}
Both Clang and VC seem to be okay with my C example; only some versions of GCC (not all) produce the aforementioned error.
§6.2.2, 7 says:
If, within a translation unit, the same identifier appears with both
internal and external linkage, the behavior is undefined.
So, your program has undefined behaviour.
§6.2.2, 4 says that
extern int a; //a_External
has external linkage because the prior declaration visible in the scope int a; //a_Local
has no linkage. But
static int a; //a_Internal
declares a
with internal linkage. Hence, it's undefined per §6.2.2, 7.
The compiler is giving this error because inside the a_External
scope, a_Internal
is still accessible, thus you are redeclaring a_Internal
from static
to extern
in a_External
because of the name collision of a
. This problem can be solved by using different variable names, for example:
static int a1; //a_Internal
int main(void) {
int a2; //a_Local
{
extern int a3; //a_External
}
return 0;
}
C standard says:
In the set of translation units each declaration of a particular
identifier with external linkage denotes the same entity (object or
function). Within one translation unit, each declaration of an
identifier with internal linkage denotes the same entity.
In the set of translation units we cannot have multiple distinct external entities with the same name, so the types of each declaration that denotes that single external entity should agree. We can check if types agree within one translation unit, this is done at compile-time. We cannot check if types agree between different translation units neither at compile-time nor at link-time.
For an identifier declared with the storage-class specifier extern in
a scope in which a prior declaration of that identifier is visible,31)
if the prior declaration specifies internal or external linkage, the
linkage of the identifier at the later declaration is the same as the
linkage specified at the prior declaration. If no prior declaration is
visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.
static int a; //a_Internal
int main(void) {
int a; //No linkage
{
extern int a; //a_External
}
return 0;
}
Here the previous declaration of identifier a has no linkage, so extern int a
has external linkage. It means that we have to define int a in another translation unit. However GCC decided to reject this code with variable previously declared static
redeclared 'extern' error, probably because we have undefined behavior according to C
standard.