How do I track motion using OpenCV in Python?

2019-01-08 12:11发布

问题:

I can get frames from my webcam using OpenCV in Python. The camshift example is close to what I want, but I don't want human intervention to define the object. I want to get the center point of the total pixels that have changed over the course of several frame, i.e. the center of the moving object.

回答1:

I've got some working code translated from the C version of code found in the blog post Motion Detection using OpenCV:

#!/usr/bin/env python

import cv

class Target:

    def __init__(self):
        self.capture = cv.CaptureFromCAM(0)
        cv.NamedWindow("Target", 1)

    def run(self):
        # Capture first frame to get size
        frame = cv.QueryFrame(self.capture)
        frame_size = cv.GetSize(frame)
        color_image = cv.CreateImage(cv.GetSize(frame), 8, 3)
        grey_image = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 1)
        moving_average = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_32F, 3)

        first = True

        while True:
            closest_to_left = cv.GetSize(frame)[0]
            closest_to_right = cv.GetSize(frame)[1]

            color_image = cv.QueryFrame(self.capture)

            # Smooth to get rid of false positives
            cv.Smooth(color_image, color_image, cv.CV_GAUSSIAN, 3, 0)

            if first:
                difference = cv.CloneImage(color_image)
                temp = cv.CloneImage(color_image)
                cv.ConvertScale(color_image, moving_average, 1.0, 0.0)
                first = False
            else:
                cv.RunningAvg(color_image, moving_average, 0.020, None)

            # Convert the scale of the moving average.
            cv.ConvertScale(moving_average, temp, 1.0, 0.0)

            # Minus the current frame from the moving average.
            cv.AbsDiff(color_image, temp, difference)

            # Convert the image to grayscale.
            cv.CvtColor(difference, grey_image, cv.CV_RGB2GRAY)

            # Convert the image to black and white.
            cv.Threshold(grey_image, grey_image, 70, 255, cv.CV_THRESH_BINARY)

            # Dilate and erode to get people blobs
            cv.Dilate(grey_image, grey_image, None, 18)
            cv.Erode(grey_image, grey_image, None, 10)

            storage = cv.CreateMemStorage(0)
            contour = cv.FindContours(grey_image, storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE)
            points = []

            while contour:
                bound_rect = cv.BoundingRect(list(contour))
                contour = contour.h_next()

                pt1 = (bound_rect[0], bound_rect[1])
                pt2 = (bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3])
                points.append(pt1)
                points.append(pt2)
                cv.Rectangle(color_image, pt1, pt2, cv.CV_RGB(255,0,0), 1)

            if len(points):
                center_point = reduce(lambda a, b: ((a[0] + b[0]) / 2, (a[1] + b[1]) / 2), points)
                cv.Circle(color_image, center_point, 40, cv.CV_RGB(255, 255, 255), 1)
                cv.Circle(color_image, center_point, 30, cv.CV_RGB(255, 100, 0), 1)
                cv.Circle(color_image, center_point, 20, cv.CV_RGB(255, 255, 255), 1)
                cv.Circle(color_image, center_point, 10, cv.CV_RGB(255, 100, 0), 1)

            cv.ShowImage("Target", color_image)

            # Listen for ESC key
            c = cv.WaitKey(7) % 0x100
            if c == 27:
                break

if __name__=="__main__":
    t = Target()
    t.run()


回答2:

See the forum post Motion tracking using OpenCV.

I believe you are capable of reading and translating the source code to Python, right?



回答3:

if faces:
    for ((x, y, w, h), n) in faces:
        pt1 = (int(x * image_scale), int(y * image_scale))
        pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
        ptcx=((pt1[0]+pt2[0])/2)/128
        ptcy=((pt1[1]+pt2[1])/2)/96
        cv.Rectangle(gray, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
        print ptcx;
        print ptcy;
        b=('S'+str(ptcx)+str(ptcy));

This is the part of the code I tried to get the center of the moving object when tracked using a rectangular boundary.



回答4:

This following link tracks the moving vehicles as well as counting them. It is based on OpenCV and is written in Python 2.7.
OpenCV and Python



标签: python opencv