可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I am using sklearn and having a problem with the affinity propagation. I have built an input matrix and I keep getting the following error.
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
I have run
np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True
I tried using
mat[np.isfinite(mat) == True] = 0
to remove the infinite values but this did not work either.
What can I do to get rid of the infinite values in my matrix, so that I can use the affinity propagation algorithm?
I am using anaconda and python 2.7.9.
回答1:
This might happen inside scikit, and it depends on what you're doing. I recommend reading the documentation for the functions you're using. You might be using one which depends e.g. on your matrix being positive definite and not fulfilling that criteria.
EDIT: How could I miss that:
np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True
is obviously wrong. Right would be:
np.any(np.isnan(mat))
and
np.all(np.isfinite(mat))
You want to check wheter any of the element is NaN, and not whether the return value of the any
function is a number...
回答2:
I got the same error message when using sklearn with pandas. My solution is to reset the index of my dataframe df
before running any sklearn code:
df = df.reset_index()
I encountered this issue many times when I removed some entries in my df
, such as
df = df[df.label=='desired_one']
回答3:
The Dimensions of my input array were skewed, as my input csv had empty spaces.
回答4:
This is the check on which it fails:
- https://github.com/scikit-learn/scikit-learn/blob/0.17.X/sklearn/utils/validation.py#L51
Which says
def _assert_all_finite(X):
"""Like assert_all_finite, but only for ndarray."""
X = np.asanyarray(X)
# First try an O(n) time, O(1) space solution for the common case that
# everything is finite; fall back to O(n) space np.isfinite to prevent
# false positives from overflow in sum method.
if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum())
and not np.isfinite(X).all()):
raise ValueError("Input contains NaN, infinity"
" or a value too large for %r." % X.dtype)
So make sure that you have non NaN values in your input. And all those values are actually float values. None of the values should be Inf either.
回答5:
This is my function (based on this) to clean the dataset of nan
, Inf
, and missing cells (for skewed datasets):
import pandas as pd
def clean_dataset(df):
assert isinstance(df, pd.DataFrame), "df needs to be a pd.DataFrame"
df.dropna(inplace=True)
indices_to_keep = ~df.isin([np.nan, np.inf, -np.inf]).any(1)
return df[indices_to_keep].astype(np.float64)
回答6:
I had the error after trying to select a subset of rows:
df = df.reindex(index=my_index)
Turns out that my_index
contained values that were not contained in df.index
, so the reindex function inserted some new rows and filled them with nan
.
回答7:
I had the same error, and in my case X and y were dataframes so I had to convert them to matrices first:
X = X.as_matrix().astype(np.float)
y = y.as_matrix().astype(np.float)
回答8:
With this version of python 3:
/opt/anaconda3/bin/python --version
Python 3.6.0 :: Anaconda 4.3.0 (64-bit)
Looking at the details of the error, I found the lines of codes causing the failure:
/opt/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in _assert_all_finite(X)
56 and not np.isfinite(X).all()):
57 raise ValueError("Input contains NaN, infinity"
---> 58 " or a value too large for %r." % X.dtype)
59
60
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
From this, I was able to extract the correct way to test what was going on with my data using the same test which fails given by the error message: np.isfinite(X)
Then with a quick and dirty loop, I was able to find that my data indeed contains nans
:
print(p[:,0].shape)
index = 0
for i in p[:,0]:
if not np.isfinite(i):
print(index, i)
index +=1
(367340,)
4454 nan
6940 nan
10868 nan
12753 nan
14855 nan
15678 nan
24954 nan
30251 nan
31108 nan
51455 nan
59055 nan
...
Now all I have to do is remove the values at these indexes.
回答9:
i got the same error. it worked with df.fillna(-99999, inplace=True)
before doing any replacement, substitution etc
回答10:
In my case the problem was that many scikit functions return numpy arrays, which are devoid of pandas index. So there was an index mismatch when I used those numpy arrays to build new DataFrames and then I tried to mix them with the original data.
回答11:
If you can't find the problem in X, check in y