How does one interpret the output from profr::prof

2019-04-17 12:36发布

问题:

Edit:

both of these seem relevant: How to efficiently use Rprof in R? and kernel matrix computation outside SVM training in kernlab

The first of the above is a very similar question to this one, though not the same. That question refers to base::Rprof. This question refers to profr::profr.

Original Question

For example, my code is slower than I'd like:

install.packages("profr")
devtools::install_github("alexwhitworth/imputation")

x <- matrix(rnorm(1000), 100)
x[x>1] <- NA
library(imputation)
library(profr)
a <- profr(kNN_impute(x, k=5, q=2), interval= 0.005)
plot(a)

I get slightly different plots every time that I run this code due to the stochastic nature of the profiling, but they are generally similar. But I don't know how to interpret the plots.

I've also tried using library(lineprof) following Adv-R and similarly been unable to interpret the plots.

Any help appreciated.

Also, it doesn't seem (to me at least), like the plots are at all helpful here. But the data structure itself does seem to suggest a solution:

R> head(a, 10)
   level g_id t_id                f start   end n  leaf  time     source
9      1    1    1       kNN_impute 0.005 0.190 1 FALSE 0.185 imputation
10     2    1    1        var_tests 0.005 0.010 1 FALSE 0.005       <NA>
11     2    2    1            apply 0.010 0.190 1 FALSE 0.180       base
12     3    1    1         var.test 0.005 0.010 1 FALSE 0.005      stats
13     3    2    1              FUN 0.010 0.110 1 FALSE 0.100       <NA>
14     3    2    2              FUN 0.115 0.190 1 FALSE 0.075       <NA>
15     4    1    1 var.test.default 0.005 0.010 1 FALSE 0.005       <NA>
16     4    2    1           sapply 0.010 0.040 1 FALSE 0.030       base
17     4    3    1    dist_q.matrix 0.040 0.045 1 FALSE 0.005 imputation
18     4    4    1           sapply 0.045 0.075 1 FALSE 0.030       base

回答1:

As mentioned above, the data structure itself appears to suggest an answer, which is to summarize the data by function via tapply. This can be done quite simply for a single run of profr::profr

t <- tapply(a$time, paste(a$source, a$f, sep= "::"), sum)
t[order(t)] # time / function
R> round(t[order(t)] / sum(t), 4) # percentage of total time / function

base::!                    base::%in%                       base::|           base::anyDuplicated 
                       0.0015                        0.0015                        0.0015                        0.0015 
                      base::c                 base::deparse                     base::get                   base::match 
                       0.0015                        0.0015                        0.0015                        0.0015 
                   base::mget                     base::min                       base::t                   methods::el 
                       0.0015                        0.0015                        0.0015                        0.0015 
          methods::getGeneric        NA::.findMethodInTable               NA::.getGeneric      NA::.getGenericFromCache 
                       0.0015                        0.0015                        0.0015                        0.0015 
NA::.getGenericFromCacheTable                   NA::.identC             NA::.newSignature        NA::.quickCoerceSelect 
                       0.0015                        0.0015                        0.0015                        0.0015 
                NA::.sigLabel          NA::var.test.default                 NA::var_tests               stats::var.test 
                       0.0015                        0.0015                        0.0015                        0.0015 
                  base::paste                 methods::as<-     NA::.findInheritedMethods        NA::.getClassFromCache 
                       0.0030                        0.0030                        0.0030                        0.0030 
               NA::doTryCatch              NA::tryCatchList               NA::tryCatchOne               base::crossprod 
                       0.0030                        0.0030                        0.0030                        0.0045 
                    base::try                base::tryCatch          methods::getClassDef      methods::possibleExtends 
                       0.0045                        0.0045                        0.0045                        0.0045 
          methods::loadMethod                   methods::is     imputation::dist_q.matrix          methods::validObject 
                       0.0075                        0.0090                        0.0120                        0.0136 
       NA::.findNextFromTable        methods::addNextMethod               NA::.nextMethod                  base::lapply 
                       0.0166                        0.0346                        0.0361                        0.0392 
                 base::sapply     imputation::impute_fn_knn                  methods::new        imputation::kNN_impute 
                       0.0392                        0.0392                        0.0437                        0.0557 
      methods::callNextMethod      kernlab::as.kernelMatrix                   base::apply         kernlab::kernelMatrix 
                       0.0572                        0.0633                        0.0663                        0.0753 
          methods::initialize                       NA::FUN         base::standardGeneric 
                       0.0798                        0.0994                        0.1325 

From this, I can see that the biggest time users are kernlab::kernelMatrix and the overhead from R for S4 classes and generics.

Preferred:

I note that, given the stochastic nature of the sampling process, I prefer to use averages to get a more robust picture of the time profile:

prof_list <- replicate(100, profr(kNN_impute(x, k=5, q=2), 
    interval= 0.005), simplify = FALSE)

fun_timing <- vector("list", length= 100)
for (i in 1:100) {
  fun_timing[[i]] <- tapply(prof_list[[i]]$time, paste(prof_list[[i]]$source, prof_list[[i]]$f, sep= "::"), sum)
}

# Here is where the stochastic nature of the profiler complicates things.
# Because of randomness, each replication may have slightly different 
# functions called during profiling
sapply(fun_timing, function(x) {length(names(x))})

# we can also see some clearly odd replications (at least in my attempt)
> sapply(fun_timing, sum)
[1]    2.820    5.605    2.325    2.895    3.195    2.695    2.495    2.315    2.005    2.475    4.110    2.705    2.180    2.760
 [15] 3130.240    3.435    7.675    7.155    5.205    3.760    7.335    7.545    8.155    8.175    6.965    5.820    8.760    7.345
 [29]    9.815    7.965    6.370    4.900    5.720    4.530    6.220    3.345    4.055    3.170    3.725    7.780    7.090    7.670
 [43]    5.400    7.635    7.125    6.905    6.545    6.855    7.185    7.610    2.965    3.865    3.875    3.480    7.770    7.055
 [57]    8.870    8.940   10.130    9.730    5.205    5.645    3.045    2.535    2.675    2.695    2.730    2.555    2.675    2.270
 [71]    9.515    4.700    7.270    2.950    6.630    8.370    9.070    7.950    3.250    4.405    3.475    6.420 2948.265    3.470
 [85]    3.320    3.640    2.855    3.315    2.560    2.355    2.300    2.685    2.855    2.540    2.480    2.570    3.345    2.145
 [99]    2.620    3.650

Removing the unusual replications and converting to data.frames:

fun_timing <- fun_timing[-c(15,83)]
fun_timing2 <- lapply(fun_timing, function(x) {
  ret <- data.frame(fun= names(x), time= x)
  dimnames(ret)[[1]] <- 1:nrow(ret)
  return(ret)
})

Merge replications (almost certainly could be faster) and examine results:

# function for merging DF's in a list
merge_recursive <- function(list, ...) {
  n <- length(list)
  df <- data.frame(list[[1]])
  for (i in 2:n) {
    df <- merge(df, list[[i]], ... = ...)
  }
  return(df)
}

# merge
fun_time <- merge_recursive(fun_timing2, by= "fun", all= FALSE)
# do some munging
fun_time2 <- data.frame(fun=fun_time[,1], avg_time=apply(fun_time[,-1], 1, mean, na.rm=T))
fun_time2$avg_pct <- fun_time2$avg_time / sum(fun_time2$avg_time)
fun_time2 <- fun_time2[order(fun_time2$avg_time, decreasing=TRUE),]
# examine results
R> head(fun_time2, 15)
                         fun  avg_time    avg_pct
4      base::standardGeneric 0.6760714 0.14745123
20                   NA::FUN 0.4666327 0.10177262
12       methods::initialize 0.4488776 0.09790023
9      kernlab::kernelMatrix 0.3522449 0.07682464
8   kernlab::as.kernelMatrix 0.3215816 0.07013698
11   methods::callNextMethod 0.2986224 0.06512958
1                base::apply 0.2893367 0.06310437
7     imputation::kNN_impute 0.2433163 0.05306731
14              methods::new 0.2309184 0.05036331
10    methods::addNextMethod 0.2012245 0.04388708
3               base::sapply 0.1875000 0.04089377
2               base::lapply 0.1865306 0.04068234
6  imputation::impute_fn_knn 0.1827551 0.03985890
19           NA::.nextMethod 0.1790816 0.03905772
18    NA::.findNextFromTable 0.1003571 0.02188790

Results

From the results, a similar but more robust picture emerges as with a single case. Namely, there is a lot of overhead from R and also that library(kernlab) is slowing me down. Of note, since kernlab is implemented in S4, the overhead in R is related since S4 classes are substantially slower than S3 classes.

I'd also note that my personal opinion is that a cleaned up version of this might be a useful pull request as a summary method for profr. Although I'd be interested to see others' suggestions!



标签: r profiling