C++ Push Multiple Types onto Vector

2019-01-08 08:45发布

问题:

Note: I know similar questions to this have been asked on SO before, but I did not find them helpful or very clear.

Second note: For the scope of this project/assignment, I'm trying to avoid third party libraries, such as Boost.

I am trying to see if there is a way I can have a single vector hold multiple types, in each of its indices. For example, say I have the following code sample:

vector<something magical to hold various types> vec;
int x = 3;
string hi = "Hello World";
MyStruct s = {3, "Hi", 4.01};

vec.push_back(x);
vec.push_back(hi);
vec.push_back(s);

I've heard vector<void*> could work, but then it gets tricky with memory allocation and then there is always the possibility that certain portions in nearby memory could be unintentionally overridden if a value inserted into a certain index is larger than expected.

In my actual application, I know what possible types may be inserted into a vector, but these types do not all derive from the same super class, and there is no guarantee that all of these types will be pushed onto the vector or in what order.

Is there a way that I can safely accomplish the objective I demonstrated in my code sample?

Thank you for your time.

回答1:

In order to do that, you'll definitely need a wrapper class to somehow conceal the type information of your objects from the vector.

It's probably also good to have this class throw an exception when you try to get Type-A back when you have previously stored a Type-B into it.

Here is part of the Holder class from one of my projects. You can probably start from here.

Note: due to the use of unrestricted unions, this only works in C++11. More information about this can be found here: What are Unrestricted Unions proposed in C++11?

class Holder {
public:
    enum Type {
        BOOL,
        INT,
        STRING,
        // Other types you want to store into vector.
    };

    template<typename T>
    Holder (Type type, T val);

    ~Holder () {
        // You want to properly destroy
        // union members below that have non-trivial constructors
    }

    operator bool () const {
        if (type_ != BOOL) {
           throw SomeException();
        }
        return impl_.bool_;
    }
    // Do the same for other operators
    // Or maybe use templates?

private:
    union Impl {
        bool   bool_;
        int    int_;
        string string_;

        Impl() { new(&string_) string; }
    } impl_;

    Type type_;

    // Other stuff.
};


回答2:

The objects hold by the std::vector<T> need to be of a homogenous type. If you need to put objects of different type into one vector you need somehow erase their type and make them all look similar. You could use the moral equivalent of boost::any or boost::variant<...>. The idea of boost::any is to encapsulate a type hierarchy, storing a pointer to the base but pointing to a templatized derived. A very rough and incomplete outline looks something like this:

#include <algorithm>
#include <iostream>

class any
{
private:
    struct base {
        virtual ~base() {}
        virtual base* clone() const = 0;
    };
    template <typename T>
    struct data: base {
        data(T const& value): value_(value) {}
        base* clone() const { return new data<T>(*this); }
        T value_;
    };
    base* ptr_;
public:
    template <typename T> any(T const& value): ptr_(new data<T>(value)) {}
    any(any const& other): ptr_(other.ptr_->clone()) {}
    any& operator= (any const& other) {
        any(other).swap(*this);
        return *this;
    }
    ~any() { delete this->ptr_; }
    void swap(any& other) { std::swap(this->ptr_, other.ptr_); }

    template <typename T>
    T& get() {
        return dynamic_cast<data<T>&>(*this->ptr_).value_;
    }
};

int main()
{
    any a0(17);
    any a1(3.14);
    try { a0.get<double>(); } catch (...) {}
    a0 = a1;
    std::cout << a0.get<double>() << "\n";
}


回答3:

As suggested you can use various forms of unions, variants, etc. Depending on what you want to do with your stored objects, external polymorphism could do exactly what you want, if you can define all necessary operations in a base class interface.

Here's an example if all we want to do is print the objects to the console:

#include <iostream>
#include <string>
#include <vector>
#include <memory>

class any_type
{
public:
   virtual ~any_type() {}
   virtual void print() = 0;
};

template <class T>
class concrete_type : public any_type
{
public:
   concrete_type(const T& value) : value_(value)
   {}

   virtual void print()
   {
      std::cout << value_ << '\n';
   }
private:
   T value_;
};

int main()
{
   std::vector<std::unique_ptr<any_type>> v(2);

   v[0].reset(new concrete_type<int>(99));
   v[1].reset(new concrete_type<std::string>("Bottles of Beer"));

   for(size_t x = 0; x < 2; ++x)
   {
      v[x]->print();
   }

   return 0;
}