In an effort to learn how pytorch works, I am trying to do maximum likelihood estimation of some of the parameters in a multivariate normal distribution. However it does not seem to work for any of the covariance related parameters.
So my question is: why does this code not work?
import torch
def make_covariance_matrix(sigma, rho):
return torch.tensor([[sigma[0]**2, rho * torch.prod(sigma)],
[rho * torch.prod(sigma), sigma[1]**2]])
mu_true = torch.randn(2)
rho_true = torch.rand(1)
sigma_true = torch.exp(torch.rand(2))
cov_true = make_covariance_matrix(sigma_true, rho_true)
dist_true = torch.distributions.MultivariateNormal(mu_true, cov_true)
samples = dist_true.sample((1_000,))
mu = torch.zeros(2, requires_grad=True)
log_sigma = torch.zeros(2, requires_grad=True)
atanh_rho = torch.zeros(1, requires_grad=True)
lbfgs = torch.optim.LBFGS([mu, log_sigma, atanh_rho])
def closure():
lbfgs.zero_grad()
sigma = torch.exp(log_sigma)
rho = torch.tanh(atanh_rho)
cov = make_covariance_matrix(sigma, rho)
dist = torch.distributions.MultivariateNormal(mu, cov)
loss = -torch.mean(dist.log_prob(samples))
loss.backward()
return loss
lbfgs.step(closure)
print("mu: {}, mu_hat: {}".format(mu_true, mu))
print("sigma: {}, sigma_hat: {}".format(sigma_true, torch.exp(log_sigma)))
print("rho: {}, rho_hat: {}".format(rho_true, torch.tanh(atanh_rho)))
output:
mu: tensor([0.4168, 0.1580]), mu_hat: tensor([0.4127, 0.1454], requires_grad=True)
sigma: tensor([1.1917, 1.7290]), sigma_hat: tensor([1., 1.], grad_fn=<ExpBackward>)
rho: tensor([0.3589]), rho_hat: tensor([0.], grad_fn=<TanhBackward>)
>>> torch.__version__
'1.0.0.dev20181127'
In other words, why have the estimates of log_sigma
and atanh_rho
not moved from their initial value?
The way you create your covariance matrix is not backprob-able:
def make_covariance_matrix(sigma, rho):
return torch.tensor([[sigma[0]**2, rho * torch.prod(sigma)],
[rho * torch.prod(sigma), sigma[1]**2]])
When creating a new tensor from (multiple) tensors, only the values of your input tensors will be kept. All additional information from the input tensors is stripped away, thus all graph-connection to your parameters is cut from this point, therefore backpropagation cannot get through.
Here is a short example to illustrate this:
import torch
param1 = torch.rand(1, requires_grad=True)
param2 = torch.rand(1, requires_grad=True)
tensor_from_params = torch.tensor([param1, param2])
print('Original parameter 1:')
print(param1, param1.requires_grad)
print('Original parameter 2:')
print(param2, param2.requires_grad)
print('New tensor form params:')
print(tensor_from_params, tensor_from_params.requires_grad)
Output:
Original parameter 1:
tensor([ 0.8913]) True
Original parameter 2:
tensor([ 0.4785]) True
New tensor form params:
tensor([ 0.8913, 0.4785]) False
As you can see the tensor, created from the parameters param1
and param2
, does not keep track of the gradients of param1
and param2
.
So instead you can use this code that keeps the graph connection and is backprob-able:
def make_covariance_matrix(sigma, rho):
conv = torch.cat([(sigma[0]**2).view(-1), rho * torch.prod(sigma), rho * torch.prod(sigma), (sigma[1]**2).view(-1)])
return conv.view(2, 2)
The values are concatenated to a flat tensor using torch.cat
. Then they are brought into right shape using view()
.
This results in the same matrix output as in your function, but it keeps the connection to your parameters log_sigma
and atanh_rho
.
Here is an output before and after the step with the changed make_covariance_matrix
. As you can see, now you can optimize your parameters and the values do change:
Before:
mu: tensor([ 0.1191, 0.7215]), mu_hat: tensor([ 0., 0.])
sigma: tensor([ 1.4222, 1.0949]), sigma_hat: tensor([ 1., 1.])
rho: tensor([ 0.2558]), rho_hat: tensor([ 0.])
After:
mu: tensor([ 0.1191, 0.7215]), mu_hat: tensor([ 0.0712, 0.7781])
sigma: tensor([ 1.4222, 1.0949]), sigma_hat: tensor([ 1.4410, 1.0807])
rho: tensor([ 0.2558]), rho_hat: tensor([ 0.2235])
Hope this helps!