Is there any way to use Tensorboard when training a Tensorflow model on Google Colab ?
问题:
回答1:
I currently use ngrok to tunnel traffic to localhost.
A colab example can be found here.
These are the steps (the code snippets represent cells of type "code" in colab):
Get TensorBoard running in the background.
Inspired by this answer.LOG_DIR = '/tmp/log' get_ipython().system_raw( 'tensorboard --logdir {} --host 0.0.0.0 --port 6006 &' .format(LOG_DIR) )
Download and unzip ngrok.
Replace the link passed towget
with the correct download link for your OS.! wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip ! unzip ngrok-stable-linux-amd64.zip
Launch ngrok background process...
get_ipython().system_raw('./ngrok http 6006 &')
...and retrieve public url. Source
! curl -s http://localhost:4040/api/tunnels | python3 -c \ "import sys, json; print(json.load(sys.stdin)['tunnels'][0]['public_url'])"
回答2:
TensorBoard for TensorFlow running on Google Colab using tensorboardcolab. This uses ngrok internally for tunnelling.
- Install TensorBoardColab
!pip install tensorboardcolab
- Create a tensorboardcolab object
tbc = TensorBoardColab()
This automatically creates a TensorBoard link that can be used. This Tensorboard is reading the data at './Graph'
- Create a FileWriter pointing to this location
summary_writer = tbc.get_writer()
tensorboardcolab library has the method that returns FileWriter object pointing to above './Graph' location.
- Start adding summary information to Event files at './Graph' location using summary_writer object
You can add scalar info or graph or histogram data.
Reference: https://github.com/taomanwai/tensorboardcolab
回答3:
Here is how you can display your models inline on Google Colab. Below is a very simple example that displays a placeholder:
from IPython.display import clear_output, Image, display, HTML
import tensorflow as tf
import numpy as np
from google.colab import files
def strip_consts(graph_def, max_const_size=32):
"""Strip large constant values from graph_def."""
strip_def = tf.GraphDef()
for n0 in graph_def.node:
n = strip_def.node.add()
n.MergeFrom(n0)
if n.op == 'Const':
tensor = n.attr['value'].tensor
size = len(tensor.tensor_content)
if size > max_const_size:
tensor.tensor_content = "<stripped %d bytes>"%size
return strip_def
def show_graph(graph_def, max_const_size=32):
"""Visualize TensorFlow graph."""
if hasattr(graph_def, 'as_graph_def'):
graph_def = graph_def.as_graph_def()
strip_def = strip_consts(graph_def, max_const_size=max_const_size)
code = """
<script>
function load() {{
document.getElementById("{id}").pbtxt = {data};
}}
</script>
<link rel="import" href="https://tensorboard.appspot.com/tf-graph-basic.build.html" onload=load()>
<div style="height:600px">
<tf-graph-basic id="{id}"></tf-graph-basic>
</div>
""".format(data=repr(str(strip_def)), id='graph'+str(np.random.rand()))
iframe = """
<iframe seamless style="width:1200px;height:620px;border:0" srcdoc="{}"></iframe>
""".format(code.replace('"', '"'))
display(HTML(iframe))
"""Create a sample tensor"""
sample_placeholder= tf.placeholder(dtype=tf.float32)
"""Show it"""
graph_def = tf.get_default_graph().as_graph_def()
show_graph(graph_def)
Currently, you cannot run a Tensorboard service on Google Colab the way you run it locally. Also, you cannot export your entire log to your Drive via something like summary_writer = tf.summary.FileWriter('./logs', graph_def=sess.graph_def)
so that you could then download it and look at it locally.
回答4:
Here's an easier way to do the same ngrok tunneling method on Google Colab.
!pip install tensorboardcolab
then,
from tensorboardcolab import TensorBoardColab, TensorBoardColabCallback
tbc=TensorBoardColab()
Assuming you are using Keras:
model.fit(......,callbacks=[TensorBoardColabCallback(tbc)])
You can read the original post here.
回答5:
I make use of google drive's back-up and sync https://www.google.com/drive/download/backup-and-sync/. The event files, which are prediodically saved in my google drive during training, are automatically synchronised to a folder on my own computer. Let's call this folder sync_folder
. To access the visualizations in tensorboard I open the command prompt and type: tensorboard --logdir=sync_folder
.
So, by automatically syncing my drive with my computer (using back-up and sync), I can use tensorboard as if I was training on my own computer.