I have a function that takes in a multivariate argument x. Here x = [x1,x2,x3]. Let's say my function looks like: f(x,T) = np.dot(x,T) + np.exp(np.dot(x,T) where T is a constant.
I am interested in finding df/dx1, df/dx2 and df/dx3 functions.
I have achieved some success using scipy diff, but I am a bit skeptical because it uses numerical differences. Yesterday, my colleague pointed me to Autograd (github). Since it seems to be a popular package, I am hoping someone here knows how to get partial differentiation using this package. My initial tests with this library indicates that the grad function only takes differentiation with respect to the first argument. I am not sure how to extend it to other arguments. Any help would be greatly appreciated.
Thanks.