I have a long integer number, but it is stored not in decimal form, but as set of remainders.
So, I have not the N
number, but set of such remainders:
r_1 = N % 2147483743
r_2 = N % 2147483713
r_3 = N % 2147483693
r_4 = N % 2147483659
r_5 = N % 2147483647
r_6 = N % 2147483629
I know, that N is less than multiplication of these primes, so chinese remainder theorem does work here ( http://en.wikipedia.org/wiki/Chinese_remainder_theorem ).
How can I restore N
in decimal, if I have this 6 remainders? The wonderful will be any program to do this (C/C+GMP/C++/perl/java/bc).
For example, what minimal N can have this set of remainders:
r_1 = 1246736738 (% 2147483743)
r_2 = 748761 (% 2147483713)
r_3 = 1829651881 (% 2147483693)
r_4 = 2008266397 (% 2147483659)
r_5 = 748030137 (% 2147483647)
r_6 = 1460049539 (% 2147483629)
The article you link already provides a constructive algorithm to find the solution.
Basically, for each i
you solve integer equation ri*ni + si*(N/ni) = 1
where N = n1*n2*n3*...
. The ri
and si
are unknowns here. This can be solved by extended euclidean algorithm. It's very popular and you'll have no problem finding sample implementations in any language.
Then, assuming ei = si*(N/ni)
, the answer is sum(ei*ai)
for every i
.
All this is described in that article, with proof and example.
Here the code (C+GMP), based on this LGPL code by Ben Lynn blynn@github; stanford of Garner algorithm (found with RIP Google Code Search by query garner mpz_t):
https://github.com/blynn/pbc/blob/master/guru/indexcalculus.c
(Part of his The PBC (Pairing-Based Crypto) library)
Compile with gcc -std=c99 -lgmp
. Also change size for your case.
#include <gmp.h>
#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>
// Garner's Algorithm.
// See Algorithm 14.71, Handbook of Cryptography.
// x - result v residuals m - primes t-size of vectors
static void CRT(mpz_t x, mpz_ptr *v, mpz_ptr *m, int t) {
mpz_t u;
mpz_t C[t];
int i, j;
mpz_init(u);
for (i=1; i<t; i++) {
mpz_init(C[i]);
mpz_set_ui(C[i], 1);
for (j=0; j<i; j++) {
mpz_invert(u, m[j], m[i]);
mpz_mul(C[i], C[i], u);
mpz_mod(C[i], C[i], m[i]);
}
}
mpz_set(u, v[0]);
mpz_set(x, u);
for (i=1; i<t; i++) {
mpz_sub(u, v[i], x);
mpz_mul(u, u, C[i]);
mpz_mod(u, u, m[i]);
for (j=0; j<i; j++) {
mpz_mul(u, u, m[j]);
}
mpz_add(x, x, u);
}
for (i=1; i<t; i++) mpz_clear(C[i]);
mpz_clear(u);
}
const int size=6; // Change this please
int main()
{
mpz_t res;
mpz_ptr t[size], p[size];
for(int i=0;i<size;i++) {
t[i]=(mpz_ptr)malloc(sizeof(mpz_t));
p[i]=(mpz_ptr)malloc(sizeof(mpz_t));
mpz_init(p[i]);
mpz_init(t[i]);
}
mpz_init(res);
for(int i=0;i<size;i++){
unsigned long rr,pp;
scanf("%*c%*c%*c = %lu (%% %lu)\n",&rr,&pp);
printf("Got %lu res on mod %% %lu \n",rr,pp);
mpz_set_ui(p[i],pp);
mpz_set_ui(t[i],rr);
}
CRT(res,t,p,size);
gmp_printf("N = %Zd\n", res);
}
Example is solved:
$ ./a.out
r_1 = 1246736738 (% 2147483743)
r_2 = 748761 (% 2147483713)
r_3 = 1829651881 (% 2147483693)
r_4 = 2008266397 (% 2147483659)
r_5 = 748030137 (% 2147483647)
r_6 = 1460049539 (% 2147483629)
Got 1246736738 res on mod % 2147483743
Got 748761 res on mod % 2147483713
Got 1829651881 res on mod % 2147483693
Got 2008266397 res on mod % 2147483659
Got 748030137 res on mod % 2147483647
Got 1460049539 res on mod % 2147483629
N = 703066055325632897509116263399480311
N is 703066055325632897509116263399480311