可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have a problem with Spark Scala which I want count the average from the Rdd data,I create a new RDD like this,
[(2,110),(2,130),(2,120),(3,200),(3,206),(3,206),(4,150),(4,160),(4,170)]
I want to count them like this,
[(2,(110+130+120)/3),(3,(200+206+206)/3),(4,(150+160+170)/3)]
then,get the result like this,
[(2,120),(3,204),(4,160)]
How can I do this with scala from RDD?
I use spark version 1.6
回答1:
you can use aggregateByKey.
val rdd = sc.parallelize(Seq((2,110),(2,130),(2,120),(3,200),(3,206),(3,206),(4,150),(4,160),(4,170)))
val agg_rdd = rdd.aggregateByKey((0,0))((acc, value) => (acc._1 + value, acc._2 + 1),(acc1, acc2) => (acc1._1 + acc2._1, acc1._2 + acc2._2))
val sum = agg_rdd.mapValues(x => (x._1/x._2))
sum.collect
回答2:
You can use the groupByKey
in this case.like this
val rdd = spark.sparkContext.parallelize(List((2,110),(2,130),(2,120),(3,200),(3,206),(3,206),(4,150),(4,160),(4,170)))
val processedRDD = rdd.groupByKey.mapValues{iterator => iterator.sum / iterator.size}
processedRDD.collect.toList
Here, groupByKey
will return the RDD[(Int, Iterator[Int])]
then you can simply apply average operation on Iterator
Hope this works for you
Thanks
回答3:
You can use .combineByKey()
to compute average:
val data = sc.parallelize(Seq((2,110),(2,130),(2,120),(3,200),(3,206),(3,206),(4,150),(4,160),(4,170)))
val sumCountPair = data.combineByKey((x: Int) => (x.toDouble,1),
(pair1: (Double, Int), x: Int) => (pair1._1 + x, pair1._2 + 1),
(pair1: (Double, Int), pair2: (Double, Int)) => (pair1._1 + pair2._1, pair1._2 + pair2._2))
val average = sumCountPair.map(x => (x._1, (x._2._1/x._2._2)))
average.collect()
here sumCountPair
returns type RDD[(Int, (Double, Int))]
, denoting: (Key, (SumValue, CountValue))
. The next step just divides sum by the count and returns (Key, AverageValue)