I am rather new to programming and am having a very hard time understanding interpolation. Every single source I can find that attempts to explain it is extremely cryptic (especially the package specific sites for basemap/matplotlib). I am mapping using matplotlib's basemap however the nature of my data is that it comes in 5 degree by 5 degree blocks (lat lon blocks). I want to smooth out the map by interpolation.
So first here is my code.
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap, addcyclic
#load the netcdf file into a variable
mar120="C:/Users/WillEvo/Desktop/sec_giptie_cpl_mar_120.nc"
#grab the data into a new variable
fh=Dataset(mar120,mode="r")
#assign model variable contents to python variables
lons=fh.variables['lon'][:]
lats=fh.variables['lat'][:]
test=fh.variables['NE'][:]
#specifying which time and elevation to map
ionst=test[12,0]
#close the netCDF file
fh.close()
# get rid of white stripe on map
ionst, lons=addcyclic(ionst, lons)
#map settings
m=Basemap(llcrnrlon=-180, llcrnrlat=-87.5, urcrnrlon=180, urcrnrlat=87.5,rsphere=6467997, resolution='i', projection='cyl',area_thresh=10000, lat_0=0, lon_0=0)
#Creating 2d array of latitude and longitude
lon, lat=np.meshgrid(lons, lats)
xi, yi=m(lon, lat)
#setting plot type and which variable to plot
cs=m.pcolormesh(xi,yi,np.squeeze(ionst))
#drawing grid lines
m.drawparallels(np.arange(-90.,90.,30.),labels=[1,0,0,0],fontsize=10)
m.drawmeridians(np.arange(-180.,181.,30.), labels=[0,0,0,1],fontsize=10)
#drawing coast lines
m.drawcoastlines()
#color bar
cbar=m.colorbar(cs, location='bottom', pad="10%")
cbar.set_label("Elecron Density cm-3")
#showing the plot
plt.show()
So now, how can I easily interpolate my data to smooth it out? I have tried to call Basemap.interp however I get an error saying that basemap has no attribute interp.
I am really impartial to what I use to interpolate the data, I just really need someone to explain this to me like I am dumb.
Also note that I am in the process of learning to map so details like labels and such I am not too worried about as of yet. Below is an example map that the code above outputs.
To smooth things out I would use imshow rather than pcolormesh
For example :
from pylab import *
data = random((3,3))
figure(1)
imshow(data, interpolation='none')
plt.show()
gives :
and
imshow(data, interpolation='bicubic')
gives :
The help page gives a list of all possible interpolations : http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imshow
This contains some extra code but this is what I think I ended up with. This was several years ago so I am not 100% certain this is the exact code from above which solved my answer.
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap, addcyclic
import matplotlib.animation as animation
plt.rcParams['animation.ffmpeg_path'] = 'C:/FFMPEG/bin/ffmpeg'
file_loc = "C:/Users/Will Evonosky/Dropbox/SOARS/SOARS 2015/Data"
#load the netcdf file into a variable
mar120=file_loc+"/My Datasets To Share/SA120_Iono_Acc_WE.nc"
#grab the data into a new variable
fh=Dataset(mar120,mode="r")
#assign model variable contents to python variables
lons=fh.variables['lon'][:]
lats=fh.variables['lat'][:]
var1=fh.variables['GT'][:]
#specifying which time and elevation to map
ionst=var1[0,18,:,:]
details='(Z=6)'
#close the netCDF file
fh.close()
# get rid of white stripe on map
ionst, lons=addcyclic(ionst, lons)
#Setting figure attributes
fig=plt.figure(figsize=(15,15),frameon=False)
#map settings
m=Basemap(llcrnrlon=-180, llcrnrlat=-87.5, urcrnrlon=180, urcrnrlat=87.5,rsphere=6467997, resolution='l', projection='cyl',area_thresh=10000, lat_0=0, lon_0=0)
#Creating 2d array of latitude and longitude
lon, lat=np.meshgrid(lons, lats)
xi, yi=m(lon, lat)
#plotting data onto basemap
cs=m.imshow(ionst, interpolation=None, alpha=.8)
vert=plt.axvline(x=-75, color='black', linewidth=5)
#drawing grid lines
m.drawparallels(np.arange(-90.,90.,30.),labels=[1,0,0,0],fontsize=15)
m.drawmeridians(np.arange(-180.,181.,30.), labels=[0,0,0,1],fontsize=15)
#drawing coast lines
m.drawcoastlines()
#color bar
cbar=m.colorbar(cs, location='bottom', pad="10%")
cbar.set_label(r"Ion Drag $(cm/s^2)$", size=15)
#Title Preferences
plt.title('Ion Drag at '+details, size=25)
#Function to update the plots data
def updateax1(j):
cs.set_array(var1[j,18,:,:])
return cs,
#Animate the plot
ani1=animation.FuncAnimation(fig, updateax1, frames=range(24), interval=250, blit=True)
ani1.save('Iondrag_Map.mp4')
#showing the plot
plt.show()