This question already has an answer here:
-
Why is value taking setter member functions not recommended in Herb Sutter's CppCon 2014 talk (Back to Basics: Modern C++ Style)?
4 answers
Assume I have the following class, which has a method set_value
. Which implementation is better?
class S {
public:
// a set_value method
private:
Some_type value;
};
Pass by value, then move
void S::set_value(Some_type value)
{
this->value = std::move(value);
}
Define two overloaded methods
void S::set_value(const Some_type& value)
{
this->value = value;
}
void S::set_value(Some_type&& value)
{
this->value = std::move(value);
}
The first approach requires definition of one method only while the second requires two.
However, the first approach seems to be less efficient:
- Copy/Move constructor for the parameter depending on the argument passed
- Move assignment
- Destructor for the parameter
While for the second approach, only one assignment operation is performed.
- Copy/Move assignment depending on which overloaded method is called
So, which implementation is better? Or does it matter at all?
And one more question: Is the following code equivalent to the two overloaded methods in the second approach?
template <class T>
void S::set_value(T&& value)
{
this->value = std::forward<T>(value);
}
The compiler is free to elide (optimise away) the copy even if there would be side effects in doing so. As a result, passing by value and moving the result actually gives you all of the performance benefits of the two-method solution while giving you only one code path to maintain. You should absolutely prefer to pass by value.
here's an example to prove it:
#include <iostream>
struct XYZ {
XYZ() { std::cout << "constructed" << std::endl; }
XYZ(const XYZ&) {
std::cout << "copy constructed" << std::endl;
}
XYZ(XYZ&&) noexcept {
try {
std::cout << "move constructed" << std::endl;
}
catch(...) {
}
}
XYZ& operator=(const XYZ&) {
std::cout << "assigned" << std::endl;
return *this;
}
XYZ& operator=(XYZ&&) {
std::cout << "move-assigned" << std::endl;
return *this;
}
};
struct holder {
holder(XYZ xyz) : _xyz(std::move(xyz)) {}
void set_value(XYZ xyz) { _xyz = std::move(xyz); }
void set_value_by_const_ref(const XYZ& xyz) { _xyz = xyz; }
XYZ _xyz;
};
using namespace std;
auto main() -> int
{
cout << "** create named source for later use **" << endl;
XYZ xyz2{};
cout << "\n**initial construction**" << std::endl;
holder h { XYZ() };
cout << "\n**set_value()**" << endl;
h.set_value(XYZ());
cout << "\n**set_value_by_const_ref() with nameless temporary**" << endl;
h.set_value_by_const_ref(XYZ());
cout << "\n**set_value() with named source**" << endl;
h.set_value(xyz2);
cout << "\n**set_value_by_const_ref() with named source**" << endl;
h.set_value_by_const_ref(xyz2);
return 0;
}
expected output:
** create named source for later use **
constructed
**initial construction**
constructed
move constructed
**set_value()**
constructed
move-assigned
**set_value_by_const_ref() with nameless temporary**
constructed
assigned
**set_value() with named source**
copy constructed
move-assigned
**set_value_by_const_ref() with named source**
assigned
note the absence of any redundant copies in the copy/move versions but the redundant copy-assignment when calling set_value_by_const_ref()
with nameless temporary. I note the apparent efficiency gain of the final case. I would argue that (a) it's a corner case in reality and (b) the optimiser can take care of it.
my command line:
c++ -o move -std=c++1y -stdlib=libc++ -O3 move.cpp