have a DataFrame with some categorical string values (e.g uuid|url|browser).
I would to convert it in a double to execute an ML algorithm that accept double matrix.
As convertion method I used StringIndexer (spark 1.4) that map my string values to double values, so I defined a function like this:
def str(arg: String, df:DataFrame) : DataFrame =
(
val indexer = new StringIndexer().setInputCol(arg).setOutputCol(arg+"_index")
val newDF = indexer.fit(df).transform(df)
return newDF
)
Now the issue is that i would iterate foreach column of a df, call this function and add (or convert) the original string column in the parsed double column, so the result would be:
Initial df:
[String: uuid|String: url| String: browser]
Final df:
[String: uuid|Double: uuid_index|String: url|Double: url_index|String: browser|Double: Browser_index]
Thanks in advance
You can simply foldLeft
over the Array
of columns:
val transformed: DataFrame = df.columns.foldLeft(df)((df, arg) => str(arg, df))
Still, I will argue that it is not a good approach. Since src
discards StringIndexerModel
it cannot be used when you get new data. Because of that I would recommend using Pipeline
:
import org.apache.spark.ml.Pipeline
val transformers: Array[org.apache.spark.ml.PipelineStage] = df.columns.map(
cname => new StringIndexer()
.setInputCol(cname)
.setOutputCol(s"${cname}_index")
)
// Add the rest of your pipeline like VectorAssembler and algorithm
val stages: Array[org.apache.spark.ml.PipelineStage] = transformers ++ ???
val pipeline = new Pipeline().setStages(stages)
val model = pipeline.fit(df)
model.transform(df)
VectorAssembler
can be included like this:
val assembler = new VectorAssembler()
.setInputCols(df.columns.map(cname => s"${cname}_index"))
.setOutputCol("features")
val stages = transformers :+ assembler
You could also use RFormula
, which is less customizable, but much more concise:
import org.apache.spark.ml.feature.RFormula
val rf = new RFormula().setFormula(" ~ uuid + url + browser - 1")
val rfModel = rf.fit(dataset)
rfModel.transform(dataset)