I'm doing gradient descent in matlab for mutiple variables, and the code is not getting the expected thetas I got with the normal eq. that are: theta = 1.0e+05 * 3.4041 1.1063 -0.0665 With the Normal eq. I have implemented.
And with the GDM the results I get are: theta = 1.0e+05 * 2.6618 -2.6718 -0.5954 And I don't understand why is this, maybe some one can help me and tell me where is the mistake in the code.
Code:
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
thetas = size(theta,1);
features = size(X,2)
mu = mean(X);
sigma = std(X);
mu_size = size(mu);
sigma_size = size(sigma);
%for all iterations
for iter = 1:num_iters
tempo = [];
result = [];
theta_temp = [];
%for all the thetas
for t = 1:thetas
%all the examples
for examples = 1:m
tempo(examples) = ((theta' * X(examples, :)') - y(examples)) * X(m,t)
end
result(t) = sum(tempo)
tempo = 0;
end
%theta temp, store the temp
for c = 1:thetas
theta_temp(c) = theta(c) - alpha * (1/m) * result(c)
end
%simultaneous update
for j = 1:thetas
theta(j) = theta_temp(j)
end
% Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
end
theta
end
Thanks.
EDIT: Data.
X =
1.0000 0.1300 -0.2237
1.0000 -0.5042 -0.2237
1.0000 0.5025 -0.2237
1.0000 -0.7357 -1.5378
1.0000 1.2575 1.0904
1.0000 -0.0197 1.0904
1.0000 -0.5872 -0.2237
1.0000 -0.7219 -0.2237
1.0000 -0.7810 -0.2237
1.0000 -0.6376 -0.2237
1.0000 -0.0764 1.0904
1.0000 -0.0009 -0.2237
1.0000 -0.1393 -0.2237
1.0000 3.1173 2.4045
1.0000 -0.9220 -0.2237
1.0000 0.3766 1.0904
1.0000 -0.8565 -1.5378
1.0000 -0.9622 -0.2237
1.0000 0.7655 1.0904
1.0000 1.2965 1.0904
1.0000 -0.2940 -0.2237
1.0000 -0.1418 -1.5378
1.0000 -0.4992 -0.2237
1.0000 -0.0487 1.0904
1.0000 2.3774 -0.2237
1.0000 -1.1334 -0.2237
1.0000 -0.6829 -0.2237
1.0000 0.6610 -0.2237
1.0000 0.2508 -0.2237
1.0000 0.8007 -0.2237
1.0000 -0.2034 -1.5378
1.0000 -1.2592 -2.8519
1.0000 0.0495 1.0904
1.0000 1.4299 -0.2237
1.0000 -0.2387 1.0904
1.0000 -0.7093 -0.2237
1.0000 -0.9584 -0.2237
1.0000 0.1652 1.0904
1.0000 2.7864 1.0904
1.0000 0.2030 1.0904
1.0000 -0.4237 -1.5378
1.0000 0.2986 -0.2237
1.0000 0.7126 1.0904
1.0000 -1.0075 -0.2237
1.0000 -1.4454 -1.5378
1.0000 -0.1871 1.0904
1.0000 -1.0037 -0.2237
y =
399900
329900
369000
232000
539900
299900
314900
198999
212000
242500
239999
347000
329999
699900
259900
449900
299900
199900
499998
599000
252900
255000
242900
259900
573900
249900
464500
469000
475000
299900
349900
169900
314900
579900
285900
249900
229900
345000
549000
287000
368500
329900
314000
299000
179900
299900
239500
Full dataset.