Complicated (for me) reshaping from wide to long i

2019-04-08 05:32发布

问题:

Individuals (indexed from 0 to 5) choose between two locations: A and B. My data has a wide format containing characteristics that vary by individual (ind_var) and characteristics that vary only by location (location_var).

For example, I have:

In [281]:

df_reshape_test = pd.DataFrame( {'location' : ['A', 'A', 'A', 'B', 'B', 'B'], 'dist_to_A' : [0, 0, 0, 50, 50, 50], 'dist_to_B' : [50, 50, 50, 0, 0, 0], 'location_var': [10, 10, 10, 14, 14, 14], 'ind_var': [3, 8, 10, 1, 3, 4]})

df_reshape_test

Out[281]:
    dist_to_A   dist_to_B   ind_var location location_var
0    0            50             3   A       10
1    0            50             8   A       10
2    0            50            10   A       10
3    50           0              1   B       14
4    50           0              3   B       14
5    50           0              4   B       14

The variable 'location' is the one chosen by the individual. dist_to_A is the distance to location A from the location chosen by the individual (same thing with dist_to_B)

I'd like my data to have this form:

    choice  dist_S  ind_var location    location_var
0    1        0       3         A           10
0    0       50       3         B           14
1    1        0       8         A           10
1    0       50       8         B           14
2    1        0      10         A           10
2    0       50      10         B           14
3    0       50       1         A           10
3    1        0       1         B           14
4    0       50       3         A           10
4    1        0       3         B           14
5    0       50       4         A           10
5    1        0       4         B           14

where choice == 1 indicates individual has chosen that location and dist_S is the distance from the location chosen.

I read about the .stack method but couldn't figure out how to apply it for this case. Thanks for your time!

NOTE: this is just a simple example. The datasets I'm looking have varying numbers of location and number of individuals per location, so I'm looking for a flexible solution if possible

回答1:

In fact, pandas has a wide_to_long command that can conveniently do what you intend to do.

df = pd.DataFrame( {'location' : ['A', 'A', 'A', 'B', 'B', 'B'], 
                'dist_to_A' : [0, 0, 0, 50, 50, 50], 
                'dist_to_B' : [50, 50, 50, 0, 0, 0], 
                'location_var': [10, 10, 10, 14, 14, 14], 
                'ind_var': [3, 8, 10, 1, 3, 4]})

df['ind'] = df.index

#The `location` and `location_var` corresponds to the choices, 
#record them as dictionaries and drop them 
#(Just realized you had a cleaner way, copied from yous). 

ind_to_loc = dict(df['location'])
loc_dict = dict(df.groupby('location').agg(lambda x : int(np.mean(x)))['location_var'])
df.drop(['location_var', 'location'], axis = 1, inplace = True)
# now reshape
df_long = pd.wide_to_long(df, ['dist_to_'], i = 'ind', j = 'location') 

# use the dictionaries to get variables `choice` and `location_var` back.

df_long['choice'] = df_long.index.map(lambda x: ind_to_loc[x[0]])
df_long['location_var'] = df_long.index.map(lambda x : loc_dict[x[1]])
print df_long.sort()

This gives you the table you asked for:

              ind_var  dist_to_ choice  location_var
ind location                                        
0   A               3         0      A            10
    B               3        50      A            14
1   A               8         0      A            10
    B               8        50      A            14
2   A              10         0      A            10
    B              10        50      A            14
3   A               1        50      B            10
    B               1         0      B            14
4   A               3        50      B            10
    B               3         0      B            14
5   A               4        50      B            10
    B               4         0      B            14

Of course you can generate a choice variable that takes 0 and 1 if that's what you want.



回答2:

I'm a bit curious why you'd like it in the format. There's probably a much better way to store your data. But here goes.

In [137]: import numpy as np

In [138]: import pandas as pd

In [139]: df_reshape_test = pd.DataFrame( {'location' : ['A', 'A', 'A', 'B', 'B
', 'B'], 'dist_to_A' : [0, 0, 0, 50, 50, 50], 'dist_to_B' : [50, 50, 50, 0, 0, 
0], 'location_var': [10, 10, 10, 14, 14, 14], 'ind_var': [3, 8, 10, 1, 3, 4]})

In [140]: print(df_reshape_test)
   dist_to_A  dist_to_B  ind_var location  location_var
0          0         50        3        A            10
1          0         50        8        A            10
2          0         50       10        A            10
3         50          0        1        B            14
4         50          0        3        B            14
5         50          0        4        B            14

In [141]: # Get the new axis separately:

In [142]: idx = pd.Index(df_reshape_test.index.tolist() * 2)

In [143]: df2 = df_reshape_test[['ind_var', 'location', 'location_var']].reindex(idx)

In [144]: print(df2)
   ind_var location  location_var
0        3        A            10
1        8        A            10
2       10        A            10
3        1        B            14
4        3        B            14
5        4        B            14
0        3        A            10
1        8        A            10
2       10        A            10
3        1        B            14
4        3        B            14
5        4        B            14

In [145]: # Swap the location for the second half

In [146]: # replace any 6 with len(df) / 2 + 1 if you have more rows.d 

In [147]: df2['choice'] = [1] * 6 + [0] * 6  # may need to play with this.

In [148]: df2.iloc[6:].location.replace({'A': 'B', 'B': 'A'}, inplace=True)

In [149]: df2 = df2.sort()

In [150]: df2['dist_S'] = np.abs((df2.choice - 1) * 50)

In [151]: print(df2)
   ind_var location  location_var  choice  dist_S
0        3        A            10       1       0
0        3        B            10       0      50
1        8        A            10       1       0
1        8        B            10       0      50
2       10        A            10       1       0
2       10        B            10       0      50
3        1        B            14       1       0
3        1        A            14       0      50
4        3        B            14       1       0
4        3        A            14       0      50
5        4        B            14       1       0
5        4        A            14       0      50

It's not going to generalize well, but there are probably alternative (better) ways to get around the uglier parts like generating the choice col.



回答3:

Ok, this took longer that I expected, but here's a more general answer that works with an arbitrary number of choices per individual. I'm sure there are simpler ways, so it would be great if somebody can chime in with something better for some of the following code.

df = pd.DataFrame( {'location' : ['A', 'A', 'A', 'B', 'B', 'B'], 'dist_to_A' : [0, 0, 0, 50, 50, 50], 'dist_to_B' : [50, 50, 50, 0, 0, 0], 'location_var': [10, 10, 10, 14, 14, 14], 'ind_var': [3, 8, 10, 1, 3, 4]})

which gives

    dist_to_A   dist_to_B   ind_var location   location_var
0    0           50          3     A            10
1    0           50          8     A            10
2    0           50         10     A            10
3    50          0           1     B            14
4    50          0           3     B            14
5    50          0           4     B            14

Then we do:

df.index.names = ['ind']

# Add choice var

df['choice'] = 1

# Create dictionaries we'll use later

ind_to_loc = dict(df['location'])
# gives ind_to_loc equal to {0 : 'A', 1 : 'A', 2 : 'A', 3 : 'B', 4 : 'B', 5: 'B'}

ind_dict = dict(df['ind_var'])
#gives  { 0: 3, 1 : 8, 2 : 10, 3: 1, 4 : 3, 5: 4}

loc_dict = dict(  df.groupby('location').agg(lambda x : int(np.mean(x)) )['location_var']  )
# gives  {'A' : 10, 'B' : 14}

Now I create a Multi-Index and do a re-index to get a long shape

df = df.set_index( [df.index, df['location']] )

df.index.names = ['ind', 'location']

# re-index to long shape

loc_list = ['A', 'B']
ind_list = [0, 1, 2, 3, 4, 5]
new_shape = [  (ind, loc) for ind in ind_list for loc in loc_list]
idx = pd.Index(new_shape)
df_long = df.reindex(idx, method = None)
df_long.index.names = ['ind', 'loc']

The long shape looks like this:

         dist_to_A  dist_to_B  ind_var location  location_var  choice
ind loc                                                              
0   A            0         50        3        A            10       1
    B          NaN        NaN      NaN      NaN           NaN     NaN
1   A            0         50        8        A            10       1
    B          NaN        NaN      NaN      NaN           NaN     NaN
2   A            0         50       10        A            10       1
    B          NaN        NaN      NaN      NaN           NaN     NaN
3   A          NaN        NaN      NaN      NaN           NaN     NaN
    B           50          0        1        B            14       1
4   A          NaN        NaN      NaN      NaN           NaN     NaN
    B           50          0        3        B            14       1
5   A          NaN        NaN      NaN      NaN           NaN     NaN
    B           50          0        4        B            14       1

So now fill the NaN values with the dictionaries:

df_long['ind_var'] = df_long.index.map(lambda x : ind_dict[x[0]] )
df_long['location']  = df_long.index.map(lambda x : ind_to_loc[x[0]] )
df_long['location_var'] = df_long.index.map(lambda x : loc_dict[x[1]] )

# Fill in choice
df_long['choice'] = df_long['choice'].fillna(0)

Finally, all that is left is creating dist_S
I'll cheat here and assume I can create a nested dictionary like this one

nested_loc = {'A' : {'A' : 0, 'B' : 50}, 'B' : {'A' : 50, 'B' : 0}}

(This reads: if you're in location A, then location A is at 0 km and location B at 50 km)

def nested_f(x):    
    return nested_loc[x[0]][x[1]]

df_long = df_long.reset_index()
df_long['dist_S'] = df_long[['loc', 'location']].apply(nested_f, axis=1)

df_long = df_long.drop(['dist_to_A', 'dist_to_B', 'location'], axis = 1 )

df_long

gives the desired result

    ind loc ind_var location_var    choice  dist_S
0    0   A   3         10            1      0
1    0   B   3         14            0      50
2    1   A   8         10            1      0
3    1   B   8         14            0      50
4    2   A   10        10            1      0
5    2   B   10        14            0      50
6    3   A   1         10            0      50
7    3   B   1         14            1      0
8    4   A   3         10            0      50
9    4   B   3         14            1      0
10   5   A   4         10            0      50
11   5   B   4         14            1      0