I am working through this great tutorial on creating an image classifier using Keras. Once I have trained the model, I save it to a file and then later reload it into a model in a test script shown below.
I get the following exception when I evaluate the model using a new, never-before-seen image:
Error:
Traceback (most recent call last):
File "test_classifier.py", line 48, in <module>
score = model.evaluate(x, y, batch_size=16)
File "/Library/Python/2.7/site-packages/keras/models.py", line 655, in evaluate
sample_weight=sample_weight)
File "/Library/Python/2.7/site-packages/keras/engine/training.py", line 1131, in evaluate
batch_size=batch_size)
File "/Library/Python/2.7/site-packages/keras/engine/training.py", line 959, in _standardize_user_data
exception_prefix='model input')
File "/Library/Python/2.7/site-packages/keras/engine/training.py", line 108, in standardize_input_data
str(array.shape))
Exception: Error when checking model input: expected convolution2d_input_1 to have shape (None, 3, 150, 150) but got array with shape (1, 3, 150, 198)`
Is the problem with the model that I have trained or with how I am invoking the evaluate method?
Code:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import numpy as np
img_width, img_height = 150, 150
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 2000
nb_validation_samples = 800
nb_epoch = 5
model = Sequential()
model.add(Convolution2D(32, 3, 3, input_shape=(3, img_width, img_height)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.load_weights('first_try.h5')
img = load_img('data/test2/ferrari.jpeg')
x = img_to_array(img) # this is a Numpy array with shape (3, 150, 150)
x = x.reshape( (1,) + x.shape ) # this is a Numpy array with shape (1, 3, 150, 150)
y = np.array([0])
score = model.evaluate(x, y, batch_size=16)`