I need to find the indexes in the vector based on several boolean predicates.
ex:
vector<float> v;
vector<int> idx;
idx=where( bool_func1(v), bool_func2(v), ... );
What is the way to declare **where**
function, in order to use the several user defined boolean functions over the vector?
thanks
Arman.
Edit after one week
I did some complex solutions with templates. But in reality one can use already predefined valarray
for my tasks. Here is the code snippet maybe one can find it useful:
double dr=Rc/(double)Nbins, r;
sigma.resize(Nbins);
rr=sigma;
valarray<double> vz(&data.vz[0], data.vz.size());
double mvel=vz.sum()/(double)vz.size();
for(size_t i=0l;i<Nbins;i++)
{
r=dr*i;
valarray<bool> ids = (dist < r+dr) && (dist > r);//The magic valarray<bool>
if(ids.max())
{
valarray<double> d=vz[ids];//we can use indirect operation.
d-=mvel;
d=pow(d,2.0);
sigma[i]= sqrt(d.sum()/(double)d.size());
rr[i]=r;
cout<<i<<") "<<r<<" "<<sigma[i]<<endl;
}
}
Make your bool_xxx functions actually functors of a specific kind of type (tag dispatching would be enough). Then override || and && for them such that these operators return a bool_and, or bool_or. Then you can use your bool_ predicates like so:
std::find_if(vect.begin(), vect.end(), bool_x1() || bool_x2() && (bool_x3() || bool_x4() && bool_x5()));
If you're tempted to write a "where" function then you apparently want to do this more than once with a different set of bool_xxx functions. Even if you know that you want a certain type of composition now, you may as well make it as universal as possible. This is how I'd do it.
Edit:
Based on this comment: @Jerry: For example I need to know: id=where(v < 10.0 && v>1.0); and somewhere later I would like to know: id=where(v < fun(v)); you may be better off with boost::lambda:
namespace l = boost::lambda;
std::find_if(vect.begin(), vect.end(), l::_1 < 10.0 && l::_1 > 1.0);
std::find_if(vect.begin(), vect.end(), l::_1 < l::bind(fun, l::_1));
Or, if you hate lambda or aren't allowed to use it...or just want a very slightly nicer syntax (but inability to use functions directly) then just make your own placeholder type and override it to return bool_xxx functors on operators <, >, etc...
Edit2: Here's an untested where that returns a vector of iterators to all objects matching:
template < typename ForwardIter, typename Predicate >
std::vector<ForwardIter> where(ForwardIter beg, ForwardIter end, Predicate pred)
{
ForwardIter fit = std::find_if(beg,end,pred);
if (fit == end) return std::vector<ForwardIter>();
ForwardIter nit = fit; ++nit;
std::vector<ForwardIter> collection = where(nit,end,pred);
collection.push_front(fit);
return collection;
}
It's recursive and could be slow on some implementations but there's one way to do it.
You could use a predicated version of transform
, if there were one. There's not one, but it is very easy to write:
template<class InputIterator, class OutputIterator, class UnaryFunction, class Predicate>
OutputIterator transform_if(InputIterator first,
InputIterator last,
OutputIterator result,
UnaryFunction f,
Predicate pred)
{
for (; first != last; ++first)
{
if( pred(*first) )
*result++ = f(*first);
}
return result;
}
Then you would need a way to make a composite of multiple predicates, so that you could express something like find_if( begin, end, condition1 && condition2 )
. This, again, is easy to write:
template<typename LHS, typename RHS> struct binary_composite : public std::unary_function<Gizmo, bool>
{
binary_composite(const LHS& lhs, const RHS& rhs) : lhs_(&lhs), rhs_(&rhs) {};
bool operator()(const Gizmo& g) const
{
return lhs_->operator()(g) && rhs_->operator()(g);
}
private:
const LHS* lhs_;
const RHS* rhs_;
};
Finally you need a gizmo that transform_if
uses to convert an object reference to an object pointer. Surprise, surprise, easy to write...
template<typename Obj> struct get_ptr : public std::unary_function<Obj, Obj*>
{
Obj* operator()(Obj& rhs) const { return &rhs; }
};
Let's put this all together with a concrete example. Gizmo
below is the object that you have a collection of. We have 2 predicates find_letter
and find_value
that we want to search for matches to in our main vector
. transform_if
is the predicated version of transform
, get_ptr
converts an object reference to a pointer, and binary_composite
strings together the two composites.
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <string>
#include <functional>
#include <vector>
using namespace std;
struct Gizmo
{
string name_;
int value_;
};
struct find_letter : public std::unary_function<Gizmo, bool>
{
find_letter(char c) : c_(c) {}
bool operator()(const Gizmo& rhs) const { return rhs.name_[0] == c_; }
private:
char c_;
};
struct find_value : public std::unary_function<Gizmo, int>
{
find_value(int v) : v_(v) {};
bool operator()(const Gizmo& rhs) const { return rhs.value_ == v_; }
private:
int v_;
};
template<typename LHS, typename RHS> struct binary_composite : public std::unary_function<Gizmo, bool>
{
binary_composite(const LHS& lhs, const RHS& rhs) : lhs_(&lhs), rhs_(&rhs) {};
bool operator()(const Gizmo& g) const
{
return lhs_->operator()(g) && rhs_->operator()(g);
}
private:
const LHS* lhs_;
const RHS* rhs_;
};
template<typename LHS, typename RHS> binary_composite<LHS,RHS> make_binary_composite(const LHS& lhs, const RHS& rhs)
{
return binary_composite<LHS, RHS>(lhs, rhs);
}
template<class InputIterator, class OutputIterator, class UnaryFunction, class Predicate>
OutputIterator transform_if(InputIterator first,
InputIterator last,
OutputIterator result,
UnaryFunction f,
Predicate pred)
{
for (; first != last; ++first)
{
if( pred(*first) )
*result++ = f(*first);
}
return result;
}
template<typename Obj> struct get_ptr : public std::unary_function<Obj, Obj*>
{
Obj* operator()(Obj& rhs) const { return &rhs; }
};
int main()
{
typedef vector<Gizmo> Gizmos;
Gizmos gizmos;
// ... fill the gizmo vector
typedef vector<Gizmo*> Found;
Found found;
transform_if(gizmos.begin(), gizmos.end(), back_inserter(found), get_ptr<Gizmo>(), binary_composite<find_value,find_letter>(find_value(42), find_letter('a')));
return 0;
}
EDIT:
Based on sbi's iterative approach, here's a predicated version of copy
, which is more in line with the general STL paradigm, and can be used with back_insert_iterator
to accomplish what's wanted in this case. It will give you a vector
of object, not iterators or indexes, so the transform_if
I posted above is still better for this use than copy_if
. But here it is...
template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator copy_if(InputIterator first,
InputIterator last,
OutputIterator result,
Predicate pred)
{
for (; first != last; ++first)
{
if( pred(*first) )
*result++ = *first;
}
return result;
}
This seems like a problem that could much easier be solved in an declarative language like Prolog. I gave it a try in C++ anyway:
typedef float type;
typedef bool (*check)(type);
std::vector<int> where(const std::vector<type>& vec,
const std::vector<check>& checks)
{
std::vector<int> ret;
for (int i = 0; i < vec.size(); i++)
{
bool allGood = true;
for (int j = 0; j < checks.size(); j++)
{
if (!checks[j](vec[i]))
{
allGood = false;
break;
}
}
if (allGood)
ret.push_back(i);
}
return ret;
}
I am not sure which indexes you want. Is this what you are trying to acheive:
//Function pointer declaration
typedef bool (*Predicate)(const std::vector<float>& v);
//Predicates
bool bool_func1(const std::vector<float>& v)
{
//Implement
return true;
}
bool bool_func2(const std::vector<float>& v)
{
//Implement
return true;
}
std::vector<int> where_func(const std::vector<float>& v,
const std::vector<Predicate>& preds)
{
std::vector<int> idxs;
std::vector<Predicate>::const_iterator iter = preds.begin();
std::vector<Predicate>::const_iterator eiter = preds.end();
for(; iter != eiter; ++iter)
{
if((*iter)(v))
{
idxs.push_back(eiter - iter);
}
}
return idxs;
}
template<typename Vector, typename T> std::vector<int> where(const std::vector<Vector>& vec, T t) {
std::vector<int> results;
for(int i = 0; i < vec.size(); i++) {
if (t(vec[i])
results.push_back(i)
}
return results;
}
Overload for additional function object arguments as you wish. Use:
template<typename T> struct AlwaysAccept {
bool operator()(const T& t) { return true; }
};
std::vector<float> floats;
// insert values into floats here
std::vector<int> results = where(floats, AlwaysAccept<float>());
Noah Robert's solution is nice, but I'm not wholly sure how I could make that work.