I'm trying to solve the following problem using Mathematica:
What is the smallest positive integer not obtainable from the set {2,3,4,5,6,7,8}
via arithmetic operations {+,-,*,/}
, exponentiation, and parentheses. Each number in the set must be used exactly once. Unary operations are NOT allowed (1 cannot be converted to -1 with without using a 0, for example).
For example, the number 1073741824000000000000000
is obtainable via (((3+2)*(5+4))/6)^(8+7)
.
I am a beginner with Mathematica. I have written code that I believe solves the problems for the set {2,3,4,5,6,7}
(I obtained 2249 as my answer), but my code is not efficient enough to work with the set {2,3,4,5,6,7,8}
. (My code already takes 71 seconds to run on the set {2,3,4,5,6,7}
)
I would very much appreciate any tips or solutions to solving this harder problem with Mathematica, or general insights as to how I could speed my existing code.
My existing code uses a brute force, recursive approach:
(* this defines combinations for a set of 1 number as the set of that 1 number *)
combinations[list_ /; Length[list] == 1] := list
(* this tests whether it's ok to exponentiate two numbers including (somewhat) arbitrary restrictions to prevent overflow *)
oktoexponent[number1_, number2_] :=
If[number1 == 0, number2 >= 0,
If[number1 < 0,
(-number1)^number2 < 10000 \[And] IntegerQ[number2],
number1^number2 < 10000 \[And] IntegerQ[number2]]]
(* this takes a list and removes fractions with denominators greater than 100000 *)
cleanup[list_] := Select[list, Denominator[#] < 100000 &]
(* this defines combinations for a set of 2 numbers - and returns a set of all possible numbers obtained via applications of + - * / filtered by oktoexponent and cleanup rules *)
combinations[list_ /; Length[list] == 2 && Depth[list] == 2] :=
cleanup[DeleteCases[#, Null] &@DeleteDuplicates@
{list[[1]] + list[[2]],
list[[1]] - list[[2]],
list[[2]] - list[[1]],
list[[1]]*list[[2]],
If[oktoexponent[list[[1]], list[[2]]], list[[1]]^list[[2]],],
If[oktoexponent[list[[2]], list[[1]]], list[[2]]^list[[1]],],
If[list[[2]] != 0, list[[1]]/list[[2]],],
If[list[[1]] != 0, list[[2]]/list[[1]],]}]
(* this extends combinations to work with sets of sets *)
combinations[
list_ /; Length[list] == 2 && Depth[list] == 3] :=
Module[{m, n, list1, list2},
list1 = list[[1]];
list2 = list[[2]];
m = Length[list1]; n = Length[list2];
cleanup[
DeleteDuplicates@
Flatten@Table[
combinations[{list1[[i]], list2[[j]]}], {i, m}, {j, n}]]]
(* for a given set, partition returns the set of all partitions into two non-empty subsets *)
partition[list_] := Module[{subsets},
subsets = Select[Subsets[list], # != {} && # != list &];
DeleteDuplicates@
Table[Sort@{subsets[[i]], Complement[list, subsets[[i]]]}, {i,
Length[subsets]}]]
(* this finally extends combinations to work with sets of any size *)
combinations[list_ /; Length[list] > 2] :=
Module[{partitions, k},
partitions = partition[list];
k = Length[partitions];
cleanup[Sort@
DeleteDuplicates@
Flatten@(combinations /@
Table[{combinations[partitions[[i]][[1]]],
combinations[partitions[[i]][[2]]]}, {i, k}])]]
Timing[desiredset = combinations[{2, 3, 4, 5, 6, 7}];]
{71.5454, Null}
Complement[
Range[1, 3000], #] &@(Cases[#, x_Integer /; x > 0 && x <= 3000] &@
desiredset)
{2249, 2258, 2327, 2509, 2517, 2654, 2789, 2817, 2841, 2857, 2990, 2998}