Named tuples are easy to create, lightweight object types. namedtuple
instances can be referenced using object-like variable deferencing or the standard tuple syntax. If these data structures can be accessed both by object deferencing & indexes, how are they implemented internally? Is it via hash tables?
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
回答1:
Actually, it's very easy to find out how a given namedtuple
is implemented: if you pass the keyword argument verbose=True
when creating it, its class definition is printed:
>>> Point = namedtuple('Point', "x y", verbose=True)
from builtins import property as _property, tuple as _tuple
from operator import itemgetter as _itemgetter
from collections import OrderedDict
class Point(tuple):
'Point(x, y)'
__slots__ = ()
_fields = ('x', 'y')
def __new__(_cls, x, y):
'Create new instance of Point(x, y)'
return _tuple.__new__(_cls, (x, y))
@classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):
'Make a new Point object from a sequence or iterable'
result = new(cls, iterable)
if len(result) != 2:
raise TypeError('Expected 2 arguments, got %d' % len(result))
return result
def _replace(_self, **kwds):
'Return a new Point object replacing specified fields with new values'
result = _self._make(map(kwds.pop, ('x', 'y'), _self))
if kwds:
raise ValueError('Got unexpected field names: %r' % list(kwds))
return result
def __repr__(self):
'Return a nicely formatted representation string'
return self.__class__.__name__ + '(x=%r, y=%r)' % self
@property
def __dict__(self):
'A new OrderedDict mapping field names to their values'
return OrderedDict(zip(self._fields, self))
def _asdict(self):
'''Return a new OrderedDict which maps field names to their values.
This method is obsolete. Use vars(nt) or nt.__dict__ instead.
'''
return self.__dict__
def __getnewargs__(self):
'Return self as a plain tuple. Used by copy and pickle.'
return tuple(self)
def __getstate__(self):
'Exclude the OrderedDict from pickling'
return None
x = _property(_itemgetter(0), doc='Alias for field number 0')
y = _property(_itemgetter(1), doc='Alias for field number 1')
So, it's a subclass of tuple
with some extra methods to give it the required behaviour, a _fields
class-level constant containing the field names, and property
methods for attribute access to the tuple's members.
As for the code behind actually building this class definition, that's deep magic.