In a for-comprehension, I can't just put a print statement:
def prod (m: Int) = {
for (a <- 2 to m/(2*3);
print (a + " ");
b <- (a+1) to m/a;
c = (a*b)
if (c < m)) yield c
}
but I can circumvent it easily with a dummy assignment:
def prod (m: Int) = {
for (a <- 2 to m/(2*3);
dummy = print (a + " ");
b <- (a+1) to m/a;
c = (a*b)
if (c < m)) yield c
}
Being a side effect, and only used (so far) in code under development, is there a better ad hoc solution?
Is there a serious problem why I shouldn't use it, beside being a side effect?
update showing the real code, where adapting one solution is harder than expected:
From the discussion with Rex Kerr, the necessity has risen to show the original code, which is a bit more complicated, but did not seem to be relevant for the question (2x .filter, calling a method in the end), but when I tried to apply Rex' pattern to it I failed, so I post it here:
def prod (p: Array[Boolean], max: Int) = {
for (a <- (2 to max/(2*3)).
filter (p);
dummy = print (a + " ");
b <- (((a+1) to max/a).
filter (p));
if (a*b <= max))
yield (em (a, b, max)) }
Here is my attempt -- (b * a).filter is wrong, because the result is an int, not a filterable collection of ints:
// wrong:
def prod (p: Array[Boolean], max: Int) = {
(2 to max/(2*3)).filter (p).flatMap { a =>
print (a + " ")
((a+1) to max/a).filter (p). map { b =>
(b * a).filter (_ <= max).map (em (a, b, max))
}
}
}
Part II belongs to the comments, but can't be read, if written there - maybe I delete it in the end. Please excuse.
Ok - here is Rex last answer in code layout:
def prod (p: Array[Boolean], max: Int) = {
(2 to max/(2*3)).filter (p).flatMap { a =>
print (a + " ")
((a+1) to max/a).filter (b => p (b)
&& b * a < max).map { b => (m (a, b, max))
}
}
}
This is how you need to write it:
scala> def prod(m: Int) = {
| for {
| a <- 2 to m / (2 * 3)
| _ = print(a + " ")
| b <- (a + 1) to (m / a)
| c = a * b
| if c < m
| } yield c
| }
prod: (m: Int)scala.collection.immutable.IndexedSeq[Int]
scala> prod(20)
2 3 res159: scala.collection.immutable.IndexedSeq[Int] = Vector(6, 8, 10, 12, 14
, 16, 18, 12, 15, 18)
I generally find that style of coding rather difficult to follow, since loops and intermediate results and such get all mixed in with each other. I would, instead of a for loop, write something like
def prod(m: Int) = {
(2 to m/(2*3)).flatMap { a =>
print(a + " ")
((a+1) to m/a).map(_ * a).filter(_ < m)
}
}
This also makes adding print statements and such easier.
It doesn't seem like good style to put a side-effecting statement within a for-comprehension (or indeed in the middle of any function), execept for debugging in which case it doesn't really matter what you call it ("debug" seems like a good name).
If you really need to, I think you'd be better separating your concerns somewhat by assigning an intermediate val, e.g. (your original laid out more nicely):
def prod (p: Array[Boolean], max: Int) = {
for {
a <- (2 to max / (2 * 3)) filter p
debug = print (a + " ")
b <- ((a + 1) to max / a) filter p
if a * b <= max
} yield em(a, b, max)
}
becomes
def prod2 (p: Array[Boolean], max: Int) = {
val as = (2 to max / (2 * 3)) filter p
for(a <- as) print(a + " ")
as flatMap {a =>
for {
b <- ((a + 1) to max / a) filter p
if a * b <= max
} yield em(a, b, max)
}
}
Starting Scala 2.13
, the chaining operation tap
, has been included in the standard library, and can be used with minimum intrusiveness wherever we need to print some intermediate state of a pipeline:
import util.chaining._
def prod(m: Int) =
for {
a <- 2 to m / (2 * 3)
b <- (a + 1) to (m / a.tap(println)) // <- a.tap(println)
c = a * b
if c < m
} yield c
prod(20)
// 2
// 3
// res0: IndexedSeq[Int] = Vector(6, 8, 10, 12, 14, 16, 18, 12, 15, 18)
The tap
chaining operation applies a side effect (in this case println
) on a value (in this case a
) while returning the value (a
) untouched:
def tap[U](f: (A) => U): A
It's very convenient when debugging as you can use a bunch of tap
s without having to modify the code:
def prod(m: Int) =
for {
a <- (2 to m.tap(println) / (2 * 3)).tap(println)
b <- (a + 1) to (m / a.tap(println))
c = (a * b).tap(println)
if c < m
} yield c