I currently have to run a nested loop as follow:
for(int i = 0; i < N; i++){
for(int j = i+1; j <= N; j++){
compute(...)//some calculation here
}
}
I've tried leaving the first loop in CPU
and do the second loop in GPU
. Results are too many memory access
. Is there any other ways to do it? For example by thrust::reduce_by_key
?
The whole program is here:
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/generate.h>
#include <thrust/sort.h>
#include <thrust/binary_search.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <cmath>
#include <iostream>
#include <iomanip>
#define N 1000000
// define a 2d point pair
typedef thrust::tuple<float, float> Point;
// return a random Point in [0,1)^2
Point make_point(void)
{
static thrust::default_random_engine rng(12345);
static thrust::uniform_real_distribution<float> dist(0.0f, 1.0f);
float x = dist(rng);
float y = dist(rng);
return Point(x,y);
}
struct sqrt_dis: public thrust::unary_function<Point, double>
{
float x, y;
double tmp;
sqrt_dis(float _x, float _y): x(_x), y(_y){}
__host__ __device__
float operator()(Point a)
{
tmp =(thrust::get<0>(a)-x)*(thrust::get<0>(a)-x)+\
(thrust::get<1>(a)-y)*(thrust::get<1>(a)-y);
tmp = -1.0*(sqrt(tmp));
return (1.0/tmp);
}
};
int main(void) {
clock_t t1, t2;
double result;
t1 = clock();
// allocate some random points in the unit square on the host
thrust::host_vector<Point> h_points(N);
thrust::generate(h_points.begin(), h_points.end(), make_point);
// transfer to device
thrust::device_vector<Point> points = h_points;
thrust::plus<double> binary_op;
float init = 0;
for(int i = 0; i < N; i++){
Point tmp_i = points[i];
float x = thrust::get<0>(tmp_i);
float y = thrust::get<1>(tmp_i);
result += thrust::transform_reduce(points.begin()+i,\
points.end(),sqrt_dis(x,y),\
init,binary_op);
std::cout<<"result"<<i<<": "<<result<<std::endl;
}
t2 = clock()-t1;
std::cout<<"result: ";
std::cout.precision(10);
std::cout<< result <<std::endl;
std::cout<<"run time: "<<t2/CLOCKS_PER_SEC<<"s"<<std::endl;
return 0;
}
EDIT: Now that you have posted an example, here is how you could solve it:
You have n
2D points stored in a linear array like this (here n=4
)
points = [p0 p1 p2 p3]
Based on your code I assume you want to calculate:
result = f(p0, p1) + f(p0, p2) + f(p0, p3) +
f(p1, p2) + f(p1, p3) +
f(p2, p3)
Where f()
is your distance function which needs to be executed m
times in total:
m = (n-1)*n/2
in this example: m=6
You can look at this problem as a triangular matrix:
[ p0 p1 p2 p3 ]
[ p1 p2 p3 ]
[ p2 p3 ]
[ p3 ]
Transforming this matrix into a linear vector with m
elements while leaving out the diagonal elements results in:
[p1 p2 p3 p2 p3 p3]
The index of an element in the vector is k = [0,m-1]
.
Index k
can be remapped to columns and rows of the triangular matrix to k -> (i,j)
:
i = n - 2 - floor(sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5)
j = k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2
i
is the row and j
is the column.
In our example:
0 -> (0, 1)
1 -> (0, 2)
2 -> (0, 3)
3 -> (1, 2)
4 -> (1, 3)
5 -> (2, 3)
Now you can put all this together and execute a modified distance functor m
times which applies the aforementioned mapping to get the corresponding pairs based on the index and then sum up everything.
I modified your code accordingly:
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/transform_reduce.h>
#include <thrust/random.h>
#include <math.h>
#include <iostream>
#include <stdio.h>
#include <stdint.h>
#define PRINT_DEBUG
typedef float Float;
// define a 2d point pair
typedef thrust::tuple<Float, Float> Point;
// return a random Point in [0,1)^2
Point make_point(void)
{
static thrust::default_random_engine rng(12345);
static thrust::uniform_real_distribution<Float> dist(0.0, 1.0);
Float x = dist(rng);
Float y = dist(rng);
return Point(x,y);
}
struct sqrt_dis_new
{
typedef thrust::device_ptr<Point> DevPtr;
DevPtr points;
const uint64_t n;
__host__
sqrt_dis_new(uint64_t n, DevPtr p) : n(n), points(p)
{
}
__device__
Float operator()(uint64_t k) const
{
// calculate indices in triangular matrix
const uint64_t i = n - 2 - floor(sqrt((double)(-8*k + 4*n*(n-1)-7))/2.0 - 0.5);
const uint64_t j = k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2;
#ifdef PRINT_DEBUG
printf("%llu -> (%llu, %llu)\n", k,i,j);
#endif
const Point& p1 = *(points.get()+j);
const Point& p2 = *(points.get()+i);
const Float xm = thrust::get<0>(p1)-thrust::get<0>(p2);
const Float ym = thrust::get<1>(p1)-thrust::get<1>(p2);
return 1.0/(-1.0 * sqrt(xm*xm + ym*ym));
}
};
int main()
{
const uint64_t N = 4;
// allocate some random points in the unit square on the host
thrust::host_vector<Point> h_points(N);
thrust::generate(h_points.begin(), h_points.end(), make_point);
// transfer to device
thrust::device_vector<Point> d_points = h_points;
const uint64_t count = (N-1)*N/2;
std::cout << count << std::endl;
thrust::plus<Float> binary_op;
const Float init = 0.0;
Float result = thrust::transform_reduce(thrust::make_counting_iterator((uint64_t)0),
thrust::make_counting_iterator(count),
sqrt_dis_new(N, d_points.data()),
init,
binary_op);
std::cout.precision(10);
std::cout<<"result: " << result << std::endl;
return 0;
}
It depends on your compute
function which you do not specify.
Usually you unroll the loops and launch the kernel in a 2D manner for every combination of i
and j
if the computations are independent.
Have a look at the Thrust examples and identify similar use cases to your problem.