I am working on the project and part of it is to recognize objects recorded on camera. So to be more specofic:
I am using OpenCV
I have correctly setup camera and am able to retrieve pictures from it
I have compiled and experimented with number of demos from OpenCV
I need a scale- AND rotation- invariant algorithm for detection
Pictures of original objects are ONLY available as edge-images
All feature detection/extraction/matching algorithms I have seen so far are working reasonably well with gray-scale images (like photos), however due to my project specs I need to work with edge images (kinda like output of canny edge detector) which are typically BW and contain only edges found within the image. In this case the performance of algorithms I was trying to use (SURF, SIFT, MSER, etc) decreases dramatically.
So the actual question is: Has anyone come across algorithm that would be specific for matching edge images or is there a certain setup that can improve performance of SIFR/SURF/? in order to work well with that kind of input.
I would appretiate any advice or links to any relevant resources
PS: this is my first question of stackoverflow