可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I'm very new to PyQt and I am struggling to populate a QTableView control.
My code is the following:
def data_frame_to_ui(self, data_frame):
"""
Displays a pandas data frame into the GUI
"""
list_model = QtGui.QStandardItemModel()
i = 0
for val in data_frame.columns:
# for the list model
if i > 0:
item = QtGui.QStandardItem(val)
#item.setCheckable(True)
item.setEditable(False)
list_model.appendRow(item)
i += 1
self.ui.profilesListView.setModel(list_model)
# for the table model
table_model = QtGui.QStandardItemModel()
# set table headers
table_model.setColumnCount(data_frame.columns.size)
table_model.setHorizontalHeaderLabels(data_frame.columns.tolist())
self.ui.profileTableView.horizontalHeader().setStretchLastSection(True)
# fill table model data
for row_idx in range(10): #len(data_frame.values)
row = list()
for col_idx in range(data_frame.columns.size):
val = QtGui.QStandardItem(str(data_frame.values[row_idx][col_idx]))
row.append(val)
table_model.appendRow(row)
# set table model to table object
self.ui.profileTableView.setModel(table_model)
Actually in the code I succeed to populate a QListView, but the values I set to the QTableView are not displayed, also you can see that I truncated the rows to 10 because it takes forever to display the hundreds of rows of the data frame.
So, What is the fastest way to populate the table model from a pandas data frame?
Thanks in advance.
回答1:
Personally I would just create my own model class to make handling it somewhat easier.
For example:
import sys
from PyQt4 import QtCore, QtGui
Qt = QtCore.Qt
class PandasModel(QtCore.QAbstractTableModel):
def __init__(self, data, parent=None):
QtCore.QAbstractTableModel.__init__(self, parent)
self._data = data
def rowCount(self, parent=None):
return len(self._data.values)
def columnCount(self, parent=None):
return self._data.columns.size
def data(self, index, role=Qt.DisplayRole):
if index.isValid():
if role == Qt.DisplayRole:
return QtCore.QVariant(str(
self._data.values[index.row()][index.column()]))
return QtCore.QVariant()
if __name__ == '__main__':
application = QtGui.QApplication(sys.argv)
view = QtGui.QTableView()
model = PandasModel(your_pandas_data)
view.setModel(model)
view.show()
sys.exit(application.exec_())
回答2:
This works:
class PandasModel(QtCore.QAbstractTableModel):
"""
Class to populate a table view with a pandas dataframe
"""
def __init__(self, data, parent=None):
QtCore.QAbstractTableModel.__init__(self, parent)
self._data = data
def rowCount(self, parent=None):
return len(self._data.values)
def columnCount(self, parent=None):
return self._data.columns.size
def data(self, index, role=QtCore.Qt.DisplayRole):
if index.isValid():
if role == QtCore.Qt.DisplayRole:
return str(self._data.values[index.row()][index.column()])
return None
def headerData(self, col, orientation, role):
if orientation == QtCore.Qt.Horizontal and role == QtCore.Qt.DisplayRole:
return self._data.columns[col]
return None
Using it like this:
model = PandasModel(your_pandas_data_frame)
your_tableview.setModel(model)
I read here to avoid QVariant()
from PyQT 4.6 on.
回答3:
I've found all of the proposed answers painfully slow for DataFrames with 1000+ rows. What works for me blazingly fast:
class PandasModel(QtCore.QAbstractTableModel):
"""
Class to populate a table view with a pandas dataframe
"""
def __init__(self, data, parent=None):
QtCore.QAbstractTableModel.__init__(self, parent)
self._data = data
def rowCount(self, parent=None):
return self._data.shape[0]
def columnCount(self, parent=None):
return self._data.shape[1]
def data(self, index, role=QtCore.Qt.DisplayRole):
if index.isValid():
if role == QtCore.Qt.DisplayRole:
return str(self._data.iloc[index.row(), index.column()])
return None
def headerData(self, col, orientation, role):
if orientation == QtCore.Qt.Horizontal and role == QtCore.Qt.DisplayRole:
return self._data.columns[col]
return None
回答4:
There is actually some code in pandas
supporting integration with Qt.
At the time of writing this answer, the latest pandas version is 0.18.1
and you could do:
from pandas.sandbox.qtpandas import DataFrameModel, DataFrameWidget
That code seems to be coupled to PySide, however it should be relatively trivial to make it work with PyQt. Also, that code has been deprecated and the warning says that the module will be removed in the future.
Luckily they extracted that into a separated project in GitHub called pandas-qt
:
https://github.com/datalyze-solutions/pandas-qt
I would try to use that before trying to roll out my own model and view implementation.