R - simple Record Linkage - the next step ?

2019-03-31 08:51发布

问题:

I am trying to do some simple direct linkage with the library('RecordLinkage').

So I only have one vector

tv3 = c("TOURDEFRANCE", 'TOURDEFRANCE', "TOURDE FRANCE", 
"TOURDE FRANZ", "GET FRESH") 

The function that I need is compare.dedup of the library('RecordLinkage') and I get :

compare.dedup(as.data.frame(tv3))$pairs

$pairs
id1 id2 tv3 is_match
1    1   2   1       NA
2    1   3   0       NA
3    1   4   0       NA
4    1   5   0       NA
5    2   3   0       NA
....

I have trouble finding documentation for the next step. How do I then compare and find my similar pair ?

So I found the distance jarowinkler() but it returns only pairs. Basically, you can only do jarowinkler(tv3[1], tv3) one by one.

So I am asking : do you need to do your own loop to get your result or is there a more direct way from the compare.dedup function ?

mat = matrix(0, length(tv3), length(tv3))

for(j in 1:length(tv3)){
  for(i in 1:length(tv3)){
    { mat[i,j] = jarowinkler(tv3[j], tv3[i]) }
  }
}

The dissimilarity matrix

> mat
          [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 1.0000000 1.0000000 0.9846154 0.9333333 0.5240741
[2,] 1.0000000 1.0000000 0.9846154 0.9333333 0.5240741
[3,] 0.9846154 0.9846154 1.0000000 0.9525641 0.5133903
[4,] 0.9333333 0.9333333 0.9525641 1.0000000 0.5240741
[5,] 0.5240741 0.5240741 0.5133903 0.5240741 1.0000000

What I want to do is simply attribute for similar object ("TOURDEFRANCE", 'TOURDEFRANCE', "TOURDE FRANCE", "TOURDE FRANZ"), one of the possible similar object names.

How could I set a cut-off, let's say 0.90, on my dissimilarity matrix and then retreive all the rows of the similar object ?

If my data are in a dataframe

             tv3
1  TOURDEFRANCE
2  TOURDEFRANCE
3 TOURDE FRANCE
4  TOURDE FRANZ
5     GET FRESH

Do something like which cut-off > 0.90 and retreive the corresponding rows ?

Any help for this simple Record Linkage is very welcome !

回答1:

Taken from this post, here's an example that should work for you:

tv3 = as.data.frame(c("TOURDEFRANCE", 'TOURDEFRANCE', "TOURDE FRANCE", 
    "TOURDE FRANZ", "GET FRESH"))
colnames(tv3) <- "name"

tv3 %>% compare.dedup(strcmp = TRUE) %>%
        epiWeights() %>%
        epiClassify(0.5) %>%
        getPairs(show = "links", single.rows = TRUE) -> matches

In result, the matches dataframe should help you determining thresholds (set in epiClassify()).