Damerau - Levenshtein Distance, adding a threshold

2019-03-30 10:17发布

问题:

I have the following implementation, but I want to add a threshold, so if the result is going to be greater than it, just stop calculating and return.

How would I go about that?

EDIT: Here is my current code, threshold is not yet used...the goal is that it is used

    public static int DamerauLevenshteinDistance(string string1, string string2, int threshold)
    {
        // Return trivial case - where they are equal
        if (string1.Equals(string2))
            return 0;

        // Return trivial case - where one is empty
        if (String.IsNullOrEmpty(string1) || String.IsNullOrEmpty(string2))
            return (string1 ?? "").Length + (string2 ?? "").Length;


        // Ensure string2 (inner cycle) is longer
        if (string1.Length > string2.Length)
        {
            var tmp = string1;
            string1 = string2;
            string2 = tmp;
        }

        // Return trivial case - where string1 is contained within string2
        if (string2.Contains(string1))
            return string2.Length - string1.Length;

        var length1 = string1.Length;
        var length2 = string2.Length;

        var d = new int[length1 + 1, length2 + 1];

        for (var i = 0; i <= d.GetUpperBound(0); i++)
            d[i, 0] = i;

        for (var i = 0; i <= d.GetUpperBound(1); i++)
            d[0, i] = i;

        for (var i = 1; i <= d.GetUpperBound(0); i++)
        {
            for (var j = 1; j <= d.GetUpperBound(1); j++)
            {
                var cost = string1[i - 1] == string2[j - 1] ? 0 : 1;

                var del = d[i - 1, j] + 1;
                var ins = d[i, j - 1] + 1;
                var sub = d[i - 1, j - 1] + cost;

                d[i, j] = Math.Min(del, Math.Min(ins, sub));

                if (i > 1 && j > 1 && string1[i - 1] == string2[j - 2] && string1[i - 2] == string2[j - 1])
                    d[i, j] = Math.Min(d[i, j], d[i - 2, j - 2] + cost);
            }
        }

        return d[d.GetUpperBound(0), d.GetUpperBound(1)];
    }
}

回答1:

This is Regarding ur answer this: Damerau - Levenshtein Distance, adding a threshold (sorry can't comment as I don't have 50 rep yet)

I think you have made an error here. You initialized:

var minDistance = threshold;

And ur update rule is:

if (d[i, j] < minDistance)
   minDistance = d[i, j];

Also, ur early exit criteria is:

if (minDistance > threshold)
   return int.MaxValue;

Now, observe that the if condition above will never hold true! You should rather initialize minDistance to int.MaxValue



回答2:

Here's the most elegant way I can think of. After setting each index of d, see if it exceeds your threshold. The evaluation is constant-time, so it's a drop in the bucket compared to the theoretical N^2 complexity of the overall algorithm:

public static int DamerauLevenshteinDistance(string string1, string string2, int threshold)
{
    ...

    for (var i = 1; i <= d.GetUpperBound(0); i++)
    {
        for (var j = 1; j <= d.GetUpperBound(1); j++)
        {
            ...

            var temp = d[i,j] = Math.Min(del, Math.Min(ins, sub));

            if (i > 1 && j > 1 && string1[i - 1] == string2[j - 2] && string1[i - 2] == string2[j - 1])
                temp = d[i,j] = Math.Min(temp, d[i - 2, j - 2] + cost);

            //Does this value exceed your threshold? if so, get out now
            if(temp > threshold) 
              return temp;
        }
    }

    return d[d.GetUpperBound(0), d.GetUpperBound(1)];
}


回答3:

You also asked this as a SQL CLR UDF question so I'll answer in that specific context: you best optmiziation won't come from optimizing the Levenshtein distance, but from reducing the number of pairs you compare. Yes, a faster Levenshtein algorithm will improve things, but not nearly as much as reducing the number of comparisons from N square (with N in the millions of rows) to N*some factor. My proposal is to compare only elements who have the length difference within a tolerable delta. On your big table, you add a persisted computed column on LEN(Data) and then create an index on it with include Data:

ALTER TABLE Table ADD LenData AS LEN(Data) PERSISTED;
CREATE INDEX ndxTableLenData on Table(LenData) INCLUDE (Data);

Now you can restrict the sheer problem space by joining within an max difference on lenght (eg. say 5), if your data's LEN(Data) varies significantly:

SELECT a.Data, b.Data, dbo.Levenshtein(a.Data, b.Data)
FROM Table A
JOIN Table B ON B.DataLen BETWEEN A.DataLen - 5 AND A.DataLen+5


回答4:

Finally got it...though it's not as beneficial as I had hoped

    public static int DamerauLevenshteinDistance(string string1, string string2, int threshold)
    {
        // Return trivial case - where they are equal
        if (string1.Equals(string2))
            return 0;

        // Return trivial case - where one is empty
        if (String.IsNullOrEmpty(string1) || String.IsNullOrEmpty(string2))
            return (string1 ?? "").Length + (string2 ?? "").Length;


        // Ensure string2 (inner cycle) is longer
        if (string1.Length > string2.Length)
        {
            var tmp = string1;
            string1 = string2;
            string2 = tmp;
        }

        // Return trivial case - where string1 is contained within string2
        if (string2.Contains(string1))
            return string2.Length - string1.Length;

        var length1 = string1.Length;
        var length2 = string2.Length;

        var d = new int[length1 + 1, length2 + 1];

        for (var i = 0; i <= d.GetUpperBound(0); i++)
            d[i, 0] = i;

        for (var i = 0; i <= d.GetUpperBound(1); i++)
            d[0, i] = i;

        for (var i = 1; i <= d.GetUpperBound(0); i++)
        {
            var im1 = i - 1;
            var im2 = i - 2;
            var minDistance = threshold;

            for (var j = 1; j <= d.GetUpperBound(1); j++)
            {
                var jm1 = j - 1;
                var jm2 = j - 2;
                var cost = string1[im1] == string2[jm1] ? 0 : 1;

                var del = d[im1, j] + 1;
                var ins = d[i, jm1] + 1;
                var sub = d[im1, jm1] + cost;

                //Math.Min is slower than native code
                //d[i, j] = Math.Min(del, Math.Min(ins, sub));
                d[i, j] = del <= ins && del <= sub ? del : ins <= sub ? ins : sub;

                if (i > 1 && j > 1 && string1[im1] == string2[jm2] && string1[im2] == string2[jm1])
                    d[i, j] = Math.Min(d[i, j], d[im2, jm2] + cost);

                if (d[i, j] < minDistance)
                    minDistance = d[i, j];
            }

            if (minDistance > threshold)
                return int.MaxValue;
        }

        return d[d.GetUpperBound(0), d.GetUpperBound(1)] > threshold 
            ? int.MaxValue 
            : d[d.GetUpperBound(0), d.GetUpperBound(1)];
    }