可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
How do you calculate the least common multiple of multiple numbers?
So far I\'ve only been able to calculate it between two numbers. But have no idea how to expand it to calculate 3 or more numbers.
So far this is how I did it
LCM = num1 * num2 / gcd ( num1 , num2 )
With gcd is the function to calculate the greatest common divisor for the numbers. Using euclidean algorithm
But I can\'t figure out how to calculate it for 3 or more numbers.
回答1:
You can compute the LCM of more than two numbers by iteratively computing the LCM of two numbers, i.e.
lcm(a,b,c) = lcm(a,lcm(b,c))
回答2:
In Python (modified primes.py):
def gcd(a, b):
\"\"\"Return greatest common divisor using Euclid\'s Algorithm.\"\"\"
while b:
a, b = b, a % b
return a
def lcm(a, b):
\"\"\"Return lowest common multiple.\"\"\"
return a * b // gcd(a, b)
def lcmm(*args):
\"\"\"Return lcm of args.\"\"\"
return reduce(lcm, args)
Usage:
>>> lcmm(100, 23, 98)
112700
>>> lcmm(*range(1, 20))
232792560
reduce()
works something like that:
>>> f = lambda a,b: \"f(%s,%s)\" % (a,b)
>>> print reduce(f, \"abcd\")
f(f(f(a,b),c),d)
回答3:
Here\'s an ECMA-style implementation:
function gcd(a, b){
// Euclidean algorithm
var t;
while (b != 0){
t = b;
b = a % b;
a = t;
}
return a;
}
function lcm(a, b){
return (a * b / gcd(a, b));
}
function lcmm(args){
// Recursively iterate through pairs of arguments
// i.e. lcm(args[0], lcm(args[1], lcm(args[2], args[3])))
if(args.length == 2){
return lcm(args[0], args[1]);
} else {
var arg0 = args[0];
args.shift();
return lcm(arg0, lcmm(args));
}
}
回答4:
I would go with this one (C#):
static long LCM(long[] numbers)
{
return numbers.Aggregate(lcm);
}
static long lcm(long a, long b)
{
return Math.Abs(a * b) / GCD(a, b);
}
static long GCD(long a, long b)
{
return b == 0 ? a : GCD(b, a % b);
}
Just some clarifications, because at first glance it doesn\'t seams so clear what this code is doing:
Aggregate is a Linq Extension method, so you cant forget to add using System.Linq to your references.
Aggregate gets an accumulating function so we can make use of the property lcm(a,b,c) = lcm(a,lcm(b,c)) over an IEnumerable. More on Aggregate
GCD calculation makes use of the Euclidean algorithm.
lcm calculation uses Abs(a*b)/gcd(a,b) , refer to Reduction by the greatest common divisor.
Hope this helps,
回答5:
I just figured this out in Haskell:
lcm\' :: Integral a => a -> a -> a
lcm\' a b = a`div`(gcd a b) * b
lcm :: Integral a => [a] -> a
lcm (n:ns) = foldr lcm\' n ns
I even took the time to write my own gcd
function, only to find it in Prelude! Lots of learning for me today :D
回答6:
Some Python code that doesn\'t require a function for gcd:
from sys import argv
def lcm(x,y):
tmp=x
while (tmp%y)!=0:
tmp+=x
return tmp
def lcmm(*args):
return reduce(lcm,args)
args=map(int,argv[1:])
print lcmm(*args)
Here\'s what it looks like in the terminal:
$ python lcm.py 10 15 17
510
回答7:
Here is a Python one-liner (not counting imports) to return the LCM of the integers from 1 to 20 inclusive:
Python 3.5+ imports:
from functools import reduce
from math import gcd
Python 2.7 imports:
from fractions import gcd
Common logic:
lcm = reduce(lambda x,y: x*y//gcd(x, y), range(1, 21))
In both Python 2 and Python 3, operator precedence rules dictate that the *
and //
operators have the same precedence, and so they apply from left to right. As such, x*y//z
means (x*y)//z
and not x*(y//z)
. The two typically produce different results. This wouldn\'t have mattered as much for float division but it does for floor division.
回答8:
Here is a C# port of Virgil Disgr4ce\'s implemenation:
public class MathUtils
{
/// <summary>
/// Calculates the least common multiple of 2+ numbers.
/// </summary>
/// <remarks>
/// Uses recursion based on lcm(a,b,c) = lcm(a,lcm(b,c)).
/// Ported from http://stackoverflow.com/a/2641293/420175.
/// </remarks>
public static Int64 LCM(IList<Int64> numbers)
{
if (numbers.Count < 2)
throw new ArgumentException(\"you must pass two or more numbers\");
return LCM(numbers, 0);
}
public static Int64 LCM(params Int64[] numbers)
{
return LCM((IList<Int64>)numbers);
}
private static Int64 LCM(IList<Int64> numbers, int i)
{
// Recursively iterate through pairs of arguments
// i.e. lcm(args[0], lcm(args[1], lcm(args[2], args[3])))
if (i + 2 == numbers.Count)
{
return LCM(numbers[i], numbers[i+1]);
}
else
{
return LCM(numbers[i], LCM(numbers, i+1));
}
}
public static Int64 LCM(Int64 a, Int64 b)
{
return (a * b / GCD(a, b));
}
/// <summary>
/// Finds the greatest common denominator for 2 numbers.
/// </summary>
/// <remarks>
/// Also from http://stackoverflow.com/a/2641293/420175.
/// </remarks>
public static Int64 GCD(Int64 a, Int64 b)
{
// Euclidean algorithm
Int64 t;
while (b != 0)
{
t = b;
b = a % b;
a = t;
}
return a;
}
}\'
回答9:
Function to find lcm of any list of numbers:
def function(l):
s = 1
for i in l:
s = lcm(i, s)
return s
回答10:
Using LINQ you could write:
static int LCM(int[] numbers)
{
return numbers.Aggregate(LCM);
}
static int LCM(int a, int b)
{
return a * b / GCD(a, b);
}
Should add using System.Linq;
and don\'t forget to handle the exceptions ...
回答11:
Here it is in Swift.
// Euclid\'s algorithm for finding the greatest common divisor
func gcd(_ a: Int, _ b: Int) -> Int {
let r = a % b
if r != 0 {
return gcd(b, r)
} else {
return b
}
}
// Returns the least common multiple of two numbers.
func lcm(_ m: Int, _ n: Int) -> Int {
return m / gcd(m, n) * n
}
// Returns the least common multiple of multiple numbers.
func lcmm(_ numbers: [Int]) -> Int {
return numbers.reduce(1) { lcm($0, $1) }
}
回答12:
you can do it another way -
Let there be n numbers.Take a pair of consecutive numbers and save its lcm in another array. Doing this at first iteration program does n/2 iterations.Then next pick up pair starting from 0 like (0,1) , (2,3) and so on.Compute their LCM and store in another array. Do this until you are left with one array.
(it is not possible to find lcm if n is odd)
回答13:
In R, we can use the functions mGCD(x) and mLCM(x) from the package numbers, to compute the greatest common divisor and least common multiple for all numbers in the integer vector x together:
library(numbers)
mGCD(c(4, 8, 12, 16, 20))
[1] 4
mLCM(c(8,9,21))
[1] 504
# Sequences
mLCM(1:20)
[1] 232792560
回答14:
And the Scala version:
def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)
def gcd(nums: Iterable[Int]): Int = nums.reduce(gcd)
def lcm(a: Int, b: Int): Int = if (a == 0 || b == 0) 0 else a * b / gcd(a, b)
def lcm(nums: Iterable[Int]): Int = nums.reduce(lcm)
回答15:
Just for fun, a shell (almost any shell) implementation:
#!/bin/sh
gcd() { # Calculate $1 % $2 until $2 becomes zero.
until [ \"$2\" -eq 0 ]; do set -- \"$2\" \"$(($1%$2))\"; done
echo \"$1\"
}
lcm() { echo \"$(( $1 / $(gcd \"$1\" \"$2\") * $2 ))\"; }
while [ $# -gt 1 ]; do
t=\"$(lcm \"$1\" \"$2\")\"
shift 2
set -- \"$t\" \"$@\"
done
echo \"$1\"
try it with:
$ ./script 2 3 4 5 6
to get
60
The biggest input and result should be less than (2^63)-1
or the shell math will wrap.
回答16:
i was looking for gcd and lcm of array elements and found a good solution in the following link.
https://www.hackerrank.com/challenges/between-two-sets/forum
which includes following code. The algorithm for gcd uses The Euclidean Algorithm explained well in the link below.
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
private static int gcd(int a, int b) {
while (b > 0) {
int temp = b;
b = a % b; // % is remainder
a = temp;
}
return a;
}
private static int gcd(int[] input) {
int result = input[0];
for (int i = 1; i < input.length; i++) {
result = gcd(result, input[i]);
}
return result;
}
private static int lcm(int a, int b) {
return a * (b / gcd(a, b));
}
private static int lcm(int[] input) {
int result = input[0];
for (int i = 1; i < input.length; i++) {
result = lcm(result, input[i]);
}
return result;
}
回答17:
GCD needs a little correction for negative numbers:
def gcd(x,y):
while y:
if y<0:
x,y=-x,-y
x,y=y,x % y
return x
def gcdl(*list):
return reduce(gcd, *list)
def lcm(x,y):
return x*y / gcd(x,y)
def lcml(*list):
return reduce(lcm, *list)
回答18:
How about this?
from operator import mul as MULTIPLY
def factors(n):
f = {} # a dict is necessary to create \'factor : exponent\' pairs
divisor = 2
while n > 1:
while (divisor <= n):
if n % divisor == 0:
n /= divisor
f[divisor] = f.get(divisor, 0) + 1
else:
divisor += 1
return f
def mcm(numbers):
#numbers is a list of numbers so not restricted to two items
high_factors = {}
for n in numbers:
fn = factors(n)
for (key, value) in fn.iteritems():
if high_factors.get(key, 0) < value: # if fact not in dict or < val
high_factors[key] = value
return reduce (MULTIPLY, ((k ** v) for k, v in high_factors.items()))
回答19:
We have working implementation of Least Common Multiple on Calculla which works for any number of inputs also displaying the steps.
What we do is:
0: Assume we got inputs[] array, filled with integers. So, for example:
inputsArray = [6, 15, 25, ...]
lcm = 1
1: Find minimal prime factor for each input.
Minimal means for 6 it\'s 2, for 25 it\'s 5, for 34 it\'s 17
minFactorsArray = []
2: Find lowest from minFactors:
minFactor = MIN(minFactorsArray)
3: lcm *= minFactor
4: Iterate minFactorsArray and if the factor for given input equals minFactor, then divide the input by it:
for (inIdx in minFactorsArray)
if minFactorsArray[inIdx] == minFactor
inputsArray[inIdx] \\= minFactor
5: repeat steps 1-4 until there is nothing to factorize anymore.
So, until inputsArray contains only 1-s.
And that\'s it - you got your lcm.
回答20:
LCM is both associative and commutative.
LCM(a,b,c)=LCM(LCM(a,b),c)=LCM(a,LCM(b,c))
here is sample code in C:
int main()
{
int a[20],i,n,result=1; // assumption: count can\'t exceed 20
printf(\"Enter number of numbers to calculate LCM(less than 20):\");
scanf(\"%d\",&n);
printf(\"Enter %d numbers to calculate their LCM :\",n);
for(i=0;i<n;i++)
scanf(\"%d\",&a[i]);
for(i=0;i<n;i++)
result=lcm(result,a[i]);
printf(\"LCM of given numbers = %d\\n\",result);
return 0;
}
int lcm(int a,int b)
{
int gcd=gcd_two_numbers(a,b);
return (a*b)/gcd;
}
int gcd_two_numbers(int a,int b)
{
int temp;
if(a>b)
{
temp=a;
a=b;
b=temp;
}
if(b%a==0)
return a;
else
return gcd_two_numbers(b%a,a);
}
回答21:
Method compLCM takes a vector and returns LCM. All the numbers are within vector in_numbers.
int mathOps::compLCM(std::vector<int> &in_numbers)
{
int tmpNumbers = in_numbers.size();
int tmpMax = *max_element(in_numbers.begin(), in_numbers.end());
bool tmpNotDividable = false;
while (true)
{
for (int i = 0; i < tmpNumbers && tmpNotDividable == false; i++)
{
if (tmpMax % in_numbers[i] != 0 )
tmpNotDividable = true;
}
if (tmpNotDividable == false)
return tmpMax;
else
tmpMax++;
}
}
回答22:
ES6 style
function gcd(...numbers) {
return numbers.reduce((a, b) => b === 0 ? a : gcd(b, a % b));
}
function lcm(...numbers) {
return numbers.reduce((a, b) => Math.abs(a * b) / gcd(a, b));
}
回答23:
clc;
data = [1 2 3 4 5]
LCM=1;
for i=1:1:length(data)
LCM = lcm(LCM,data(i))
end
回答24:
For anyone looking for quick working code, try this:
I wrote a function lcm_n(args, num)
which computes and returns the lcm of all the numbers in the array args
. The second parameternum
is the count of numbers in the array.
Put all those numbers in an array args
and then call the function like lcm_n(args,num);
This function returns the lcm of all those numbers.
Here is the implementation of the function lcm_n(args, num)
:
int lcm_n(int args[], int num) //lcm of more than 2 numbers
{
int i, temp[num-1];
if(num==2)
{
return lcm(args[0], args[1]);
}
else
{
for(i=0;i<num-1;i++)
{
temp[i] = args[i];
}
temp[num-2] = lcm(args[num-2], args[num-1]);
return lcm_n(temp,num-1);
}
}
This function needs below two functions to work. So, just add them along with it.
int lcm(int a, int b) //lcm of 2 numbers
{
return (a*b)/gcd(a,b);
}
int gcd(int a, int b) //gcd of 2 numbers
{
int numerator, denominator, remainder;
//Euclid\'s algorithm for computing GCD of two numbers
if(a > b)
{
numerator = a;
denominator = b;
}
else
{
numerator = b;
denominator = a;
}
remainder = numerator % denominator;
while(remainder != 0)
{
numerator = denominator;
denominator = remainder;
remainder = numerator % denominator;
}
return denominator;
}
回答25:
int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a%b);
}
int lcm(int[] a, int n) {
int res = 1, i;
for (i = 0; i < n; i++) {
res = res*a[i]/gcd(res, a[i]);
}
return res;
}
回答26:
In python:
def lcm(*args):
\"\"\"Calculates lcm of args\"\"\"
biggest = max(args) #find the largest of numbers
rest = [n for n in args if n != biggest] #the list of the numbers without the largest
factor = 1 #to multiply with the biggest as long as the result is not divisble by all of the numbers in the rest
while True:
#check if biggest is divisble by all in the rest:
ans = False in [(biggest * factor) % n == 0 for n in rest]
#if so the clm is found break the loop and return it, otherwise increment factor by 1 and try again
if not ans:
break
factor += 1
biggest *= factor
return \"lcm of {0} is {1}\".format(args, biggest)
>>> lcm(100,23,98)
\'lcm of (100, 23, 98) is 112700\'
>>> lcm(*range(1, 20))
\'lcm of (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19) is 232792560\'
回答27:
This is what I used --
def greater(n):
a=num[0]
for i in range(0,len(n),1):
if(a<n[i]):
a=n[i]
return a
r=input(\'enter limit\')
num=[]
for x in range (0,r,1):
a=input(\'enter number \')
num.append(a)
a= greater(num)
i=0
while True:
while (a%num[i]==0):
i=i+1
if(i==len(num)):
break
if i==len(num):
print \'L.C.M = \',a
break
else:
a=a+1
i=0
回答28:
Here is the PHP implementation:
// https://stackoverflow.com/q/12412782/1066234
function math_gcd($a,$b)
{
$a = abs($a);
$b = abs($b);
if($a < $b)
{
list($b,$a) = array($a,$b);
}
if($b == 0)
{
return $a;
}
$r = $a % $b;
while($r > 0)
{
$a = $b;
$b = $r;
$r = $a % $b;
}
return $b;
}
function math_lcm($a, $b)
{
return ($a * $b / math_gcd($a, $b));
}
// https://stackoverflow.com/a/2641293/1066234
function math_lcmm($args)
{
// Recursively iterate through pairs of arguments
// i.e. lcm(args[0], lcm(args[1], lcm(args[2], args[3])))
if(count($args) == 2)
{
return math_lcm($args[0], $args[1]);
}
else
{
$arg0 = $args[0];
array_shift($args);
return math_lcm($arg0, math_lcmm($args));
}
}
// fraction bonus
function math_fraction_simplify($num, $den)
{
$g = math_gcd($num, $den);
return array($num/$g, $den/$g);
}
var_dump( math_lcmm( array(4, 7) ) ); // 28
var_dump( math_lcmm( array(5, 25) ) ); // 25
var_dump( math_lcmm( array(3, 4, 12, 36) ) ); // 36
var_dump( math_lcmm( array(3, 4, 7, 12, 36) ) ); // 252
Credits go to @T3db0t with his answer above (ECMA-style code).
回答29:
for python 3:
from functools import reduce
gcd = lambda a,b: a if b==0 else gcd(b, a%b)
def lcm(lst):
return reduce(lambda x,y: x*y//gcd(x, y), lst)
回答30:
If there\'s no time-constraint, this is fairly simple and straight-forward:
def lcm(a,b,c):
for i in range(max(a,b,c), (a*b*c)+1, max(a,b,c)):
if i%a == 0 and i%b == 0 and i%c == 0:
return i