This is perhaps a silly question.
I'm trying to fit data to a very strange PDF using MCMC evaluation in PyMC. For this example I just want to figure out how to fit to a normal distribution where I manually input the normal PDF. My code is:
data = [];
for count in range(1000): data.append(random.gauss(-200,15));
mean = mc.Uniform('mean', lower=min(data), upper=max(data))
std_dev = mc.Uniform('std_dev', lower=0, upper=50)
# @mc.potential
# def density(x = data, mu = mean, sigma = std_dev):
# return (1./(sigma*np.sqrt(2*np.pi))*np.exp(-((x-mu)**2/(2*sigma**2))))
mc.Normal('process', mu=mean, tau=1./std_dev**2, value=data, observed=True)
model = mc.MCMC([mean,std_dev])
model.sample(iter=5000)
print "!"
print(model.stats()['mean']['mean'])
print(model.stats()['std_dev']['mean'])
The examples I've found all use something like mc.Normal, or mc.Poisson or whatnot, but I want to fit to the commented out density function.
Any help would be appreciated.