可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have a 2-d numpy array as follows:
a = np.array([[1,5,9,13],
[2,6,10,14],
[3,7,11,15],
[4,8,12,16]]
I want to extract it into patches of 2 by 2 sizes with out repeating the elements.
The answer should exactly be the same. This can be 3-d array or list with the same order of elements as below:
[[[1,5],
[2,6]],
[[3,7],
[4,8]],
[[9,13],
[10,14]],
[[11,15],
[12,16]]]
How can do it easily?
In my real problem the size of a is (36, 72). I can not do it one by one. I want programmatic way of doing it.
回答1:
Here's a rather cryptic numpy one-liner to generate your 3-d array, called result1
here:
In [60]: x
Out[60]:
array([[2, 1, 2, 2, 0, 2, 2, 1, 3, 2],
[3, 1, 2, 1, 0, 1, 2, 3, 1, 0],
[2, 0, 3, 1, 3, 2, 1, 0, 0, 0],
[0, 1, 3, 3, 2, 0, 3, 2, 0, 3],
[0, 1, 0, 3, 1, 3, 0, 0, 0, 2],
[1, 1, 2, 2, 3, 2, 1, 0, 0, 3],
[2, 1, 0, 3, 2, 2, 2, 2, 1, 2],
[0, 3, 3, 3, 1, 0, 2, 0, 2, 1]])
In [61]: result1 = x.reshape(x.shape[0]//2, 2, x.shape[1]//2, 2).swapaxes(1, 2).reshape(-1, 2, 2)
result1
is like a 1-d array of 2-d arrays:
In [68]: result1.shape
Out[68]: (20, 2, 2)
In [69]: result1[0]
Out[69]:
array([[2, 1],
[3, 1]])
In [70]: result1[1]
Out[70]:
array([[2, 2],
[2, 1]])
In [71]: result1[5]
Out[71]:
array([[2, 0],
[0, 1]])
In [72]: result1[-1]
Out[72]:
array([[1, 2],
[2, 1]])
(Sorry, I don't have time at the moment to give a detailed breakdown of how it works. Maybe later...)
Here's a less cryptic version that uses a nested list comprehension. In this case, result2
is a python list of 2-d numpy arrays:
In [73]: result2 = [x[2*j:2*j+2, 2*k:2*k+2] for j in range(x.shape[0]//2) for k in range(x.shape[1]//2)]
In [74]: result2[5]
Out[74]:
array([[2, 0],
[0, 1]])
In [75]: result2[-1]
Out[75]:
array([[1, 2],
[2, 1]])
回答2:
Using scikit-image:
import numpy as np
from skimage.util import view_as_blocks
a = np.array([[1,5,9,13],
[2,6,10,14],
[3,7,11,15],
[4,8,12,16]])
print(view_as_blocks(a, (2, 2)))
回答3:
You can achieve it with a combination of np.reshape
and np.swapaxes
like so -
def extract_blocks(a, blocksize):
M,N = a.shape
b0, b1 = blocksize
return a.reshape(M//b0,b0,N//b1,b1).swapaxes(1,2).reshape(-1,b0,b1)
Sample cases
Let's use a sample input array, like so -
In [94]: a
Out[94]:
array([[2, 2, 6, 1, 3, 6],
[1, 0, 1, 0, 0, 3],
[4, 0, 0, 4, 1, 7],
[3, 2, 4, 7, 2, 4],
[8, 0, 7, 3, 4, 6],
[1, 5, 6, 2, 1, 8]])
Now, let's use some block-sizes for testing. Let's use two cases with blocksizes of (2,3)
and (3,3)
.
Case #1 :
In [95]: extract_blocks(a, (2,3)) # Blocksize : (2,3)
Out[95]:
array([[[2, 2, 6],
[1, 0, 1]],
[[1, 3, 6],
[0, 0, 3]],
[[4, 0, 0],
[3, 2, 4]],
[[4, 1, 7],
[7, 2, 4]],
[[8, 0, 7],
[1, 5, 6]],
[[3, 4, 6],
[2, 1, 8]]])
Case #2 :
In [96]: extract_blocks(a, (3,3)) # Blocksize : (3,3)
Out[96]:
array([[[2, 2, 6],
[1, 0, 1],
[4, 0, 0]],
[[1, 3, 6],
[0, 0, 3],
[4, 1, 7]],
[[3, 2, 4],
[8, 0, 7],
[1, 5, 6]],
[[7, 2, 4],
[3, 4, 6],
[2, 1, 8]]])