python3: singledispatch in class, how to dispatch

2019-03-25 21:24发布

问题:

Using python3.4. Here I want use singledispatch to dispatch different type in __mul__ method . The code like this :

class Vector(object):

    ## some code not paste  
    @functools.singledispatch
    def __mul__(self, other):
        raise NotImplementedError("can't mul these type")

    @__mul__.register(int)
    @__mul__.register(object)                # Becasue can't use Vector , I have to use object 
    def _(self, other):
        result = Vector(len(self))           # start with vector of zeros
        for j in range(len(self)):
            result[j] = self[j]*other
        return result

    @__mul__.register(Vector)                # how can I use the self't type
    @__mul__.register(object)                # 
    def _(self, other):
        pass # need impl 

As you can see the code , I want support Vector*Vertor , This has Name error

Traceback (most recent call last):
  File "p_algorithms\vector.py", line 6, in <module>
    class Vector(object):
  File "p_algorithms\vector.py", line 84, in Vector
    @__mul__.register(Vector)                   # how can I use the self't type
NameError: name 'Vector' is not defined

The question may be How Can I use class Name a Type in the class's method ? I know c++ have font class statement . How python solve my problem ? And it is strange to see result = Vector(len(self)) where the Vector can be used in method body . update . After have A look at http://lukasz.langa.pl/8/single-dispatch-generic-functions/ I can choose this way to implement :

import unittest
from functools import  singledispatch

class Vector(object):
    """Represent a vector in a multidimensional space."""

    def __init__(self, d):
        self._coords = [0 for i in range(0, d)]
        self.__init__mul__()


    def __init__mul__(self):
        __mul__registry = self.__mul__.registry
        self.__mul__ = singledispatch(__mul__registry[object])
        self.__mul__.register(int, self.mul_int)
        self.__mul__.register(Vector, self.mul_Vector)

    def __setitem__(self, key, value):
        self._coords[key] = value

    def __getitem__(self, item):
        return self._coords[item]

    def __len__(self):
        return len(self._coords)

    def __str__(self):
        return str(self._coords)

    @singledispatch
    def __mul__(self, other):
        print ("error type is ", type(other))
        print (type(other))
        raise NotImplementedError("can't mul these type")

    def mul_int(self,other):
         print ("other type is ", type(other))
         result = Vector(len(self))           # start with vector of zeros
         for j in range(len(self)):
             result[j] = self[j]*other
         return result

    def mul_Vector(self, other):
        print ("other type is ", type(other))
        #result = Vector(len(self))           # start with vector of zeros
        sum = 0
        for i in range(0,len(self)):
            sum += self._coords[i] * other._coords[i]
        return sum

class TestCase(unittest.TestCase):
    def test_singledispatch(self):
        # the following demonstrates usage of a few methods
        v = Vector(5)              # construct five-dimensional <0, 0, 0, 0, 0>
        for i in range(1,6):
            v[i-1] = i
        print(v.__mul__(3))
        print(v.__mul__(v))
        print(v*3)

if __name__ == "__main__":
    unittest.main()

The ans is strange :

other type is  <class 'int'>
[3, 6, 9, 12, 15]
other type is  <class '__main__.Vector'>
55
error type is  <class 'int'>
Traceback (most recent call last):
  File "p_algorithms\vector.py", line 164, in <module>
    print(v*3)
  File "C:\Python34\lib\functools.py", line 710, in wrapper
    return dispatch(args[0].__class__)(*args, **kw)
  File "p_algorithms\vector.py", line 111, in __mul__
    raise NotImplementedError("can't mul these type")

v.__mul__(3) can work but v*3 can't work. This is strange From my option v*3 is just the same as v.__mul__(3) .


Update after @Martijn Pieters's comment, I still want implement v*3 in class. So I try this

import unittest
from functools import  singledispatch

class Vector(object):

    @staticmethod
    def static_mul_int(self,other):
         print ("other type is ", type(other))
         result = Vector(len(self))           # start with vector of zeros
         for j in range(len(self)):
             result[j] = self[j]*other
         return result

    @singledispatch
    @staticmethod
    def __static_mul__(cls, other):
        print ("error type is ", type(other))
        print (type(other))
        raise NotImplementedError("can't mul these type")


    __mul__registry2 = __static_mul__.registry
    __mul__ = singledispatch(__mul__registry2[object])
    __mul__.register(int, static_mul_int)

    def __init__(self, d):
        self._coords = [0 for i in range(0, d)]
        self.__init__mul__()


    def __init__mul__(self):
        __mul__registry = self.__mul__.registry
        print ("__mul__registry",__mul__registry,__mul__registry[object])
        self.__mul__ = singledispatch(__mul__registry[object])
        self.__mul__.register(int, self.mul_int)
        print ("at last __mul__registry",self.__mul__.registry)

    # @singledispatch
    # def __mul__(self, other):
    #     print ("error type is ", type(other))
    #     print (type(other))
    #     raise NotImplementedError("can't mul these type")


    def mul_int(self,other):
         print ("other type is ", type(other))
         result = Vector(len(self))           # start with vector of zeros
         for j in range(len(self)):
             result[j] = self[j]*other
         return result

    def __setitem__(self, key, value):
        self._coords[key] = value

    def __getitem__(self, item):
        return self._coords[item]

    def __len__(self):
        return len(self._coords)

    def __str__(self):
        return str(self._coords)


class TestCase(unittest.TestCase):
    def test_singledispatch(self):
        # the following demonstrates usage of a few methods
        v = Vector(5)              # construct five-dimensional <0, 0, 0, 0, 0>
        for i in range(1,6):
            v[i-1] = i
        print(v.__mul__(3))
        print("type(v).__mul__'s registry:",type(v).__mul__.registry)
        type(v).__mul__(v, 3)
        print(v*3)

if __name__ == "__main__":
    unittest.main() 

This time . I implemet like I implement v.__mul__(3). But the error is

Traceback (most recent call last):
  File "test.py", line 73, in test_singledispatch
    type(v).__mul__(v, 3)
  File "/usr/lib/python3.4/functools.py", line 708, in wrapper
    return dispatch(args[0].__class__)(*args, **kw)
TypeError: 'staticmethod' object is not callable

For me static methond should act like the instance methond.

回答1:

You cannot use functools.singledispatch on methods at all, not as a decorator at least.

It doesn't matter that Vector isn't defined here yet; the first argument to any method is always going to be self, while you'd use single dispatch for the second argument here.

Because decorators apply to the function objects before the class object is created, you could just as well register your 'methods' as functions instead, outside of the class body, so you have access to the Vector name:

class Vector(object):

    @functools.singledispatch
    def __mul__(self, other):
        return NotImplemented

@Vector.__mul__.register(int)
@Vector.__mul__.register(Vector)                
def _(self, other):
    result = Vector(len(self))           # start with vector of zeros
    for j in range(len(self)):
        result[j] = self[j]*other
    return result

For non-supported types, you need to return the NotImplemented singleton, not raise an exception. This way Python will try the inverse operation too.

However, since the dispatch is going to key on the wrong argument (self) here anyway, you'll have to come up with your own single dispatch mechanism.

If you really want to use @functools.singledispatch you'd have to delegate to a regular function, with the arguments inversed:

@functools.singledispatch
def _vector_mul(other, self):
    return NotImplemented

class Vector(object):
    def __mul__(self, other):
        return _vector_mul(other, self)


@_vector_mul.register(int)
def _vector_int_mul(other, self):
    result = Vector(len(self))
    for j in range(len(self)):
        result[j] = self[j] * other
    return result

As for your updates using __init__mul__: v * 3 is not translated to v.__mul__(3). It is instead translated to type(v).__mul__(v, 3), see Special method lookup in the Python datamodel reference. This always bypasses any methods set directly on the instance.

Here type(v) is Vector; Python looks up the function, it won't use a bound method here. Again, because functools.singledispatch dispatches on the first argument, always, you cannot use single dispatch directly on the methods of Vector, because that first argument is always going to be a Vector instance.

In other words, Python will not use the methods you set on self in __init__mul__; special methods are never looked up on the instance, see Special method lookup in the datamodel documentation.



回答2:

This is a little ugly, as you need to defer binding the implementation of Vector/Vector multiplication until after Vector is actually defined. But the idea is that the single-dispatch function needs the first argument to be of arbitrary type, so Vector.__mul__ will call that function with self as the second argument.

import functools

class Vector:

    def __mul__(self, other):
        # Python has already dispatched Vector() * object() here, so
        # swap the arguments so that our single-dispatch works. Note
        # that in general if a*b != b*a, then the _mul_by_other
        # implementations need to compensate.
        return Vector._mul_by_other(other, self)

    @functools.singledispatch
    def _mul_by_other(x, y):
        raise NotImplementedError("Can't multiply vector by {}".format(type(x)))

    @_mul_by_other.register(int)
    def _(x, y):
        print("Multiply vector by int")

@Vector._mul_by_other.register(Vector)
def _(x, y):
    print("Multiply vector by another vector")

x = Vector()
y = Vector()
x * 3
x * y
try:
    x * "foo"
except NotImplementedError:
    print("Caught attempt to multiply by string")