Python CSV to SQLite

2019-01-07 08:22发布

问题:

I am "converting" a large (~1.6GB) CSV file and inserting specific fields of the CSV into a SQLite database. Essentially my code looks like:

import csv, sqlite3

conn = sqlite3.connect( "path/to/file.db" )
conn.text_factory = str  #bugger 8-bit bytestrings
cur = conn.cur()
cur.execute('CREATE TABLE IF NOT EXISTS mytable (field2 VARCHAR, field4 VARCHAR)')

reader = csv.reader(open(filecsv.txt, "rb"))
for field1, field2, field3, field4, field5 in reader:
  cur.execute('INSERT OR IGNORE INTO mytable (field2, field4) VALUES (?,?)', (field2, field4))

Everything works as I expect it to with the exception... IT TAKES AN INCREDIBLE AMOUNT OF TIME TO PROCESS. Am I coding it incorrectly? Is there a better way to achieve a higher performance and accomplish what I'm needing (simply convert a few fields of a CSV into SQLite table)?

**EDIT -- I tried directly importing the csv into sqlite as suggested but it turns out my file has commas in fields (e.g. "My title, comma"). That's creating errors with the import. It appears there are too many of those occurrences to manually edit the file...

any other thoughts??**

回答1:

It's possible to import the CSV directly:

sqlite> .separator ","
sqlite> .import filecsv.txt mytable

http://www.sqlite.org/cvstrac/wiki?p=ImportingFiles



回答2:

Chris is right - use transactions; divide the data into chunks and then store it.

"... Unless already in a transaction, each SQL statement has a new transaction started for it. This is very expensive, since it requires reopening, writing to, and closing the journal file for each statement. This can be avoided by wrapping sequences of SQL statements with BEGIN TRANSACTION; and END TRANSACTION; statements. This speedup is also obtained for statements which don't alter the database." - Source: http://web.utk.edu/~jplyon/sqlite/SQLite_optimization_FAQ.html

"... there is another trick you can use to speed up SQLite: transactions. Whenever you have to do multiple database writes, put them inside a transaction. Instead of writing to (and locking) the file each and every time a write query is issued, the write will only happen once when the transaction completes." - Source: How Scalable is SQLite?

import csv, sqlite3, time

def chunks(data, rows=10000):
    """ Divides the data into 10000 rows each """

    for i in xrange(0, len(data), rows):
        yield data[i:i+rows]


if __name__ == "__main__":

    t = time.time()

    conn = sqlite3.connect( "path/to/file.db" )
    conn.text_factory = str  #bugger 8-bit bytestrings
    cur = conn.cur()
    cur.execute('CREATE TABLE IF NOT EXISTS mytable (field2 VARCHAR, field4 VARCHAR)')

    csvData = csv.reader(open(filecsv.txt, "rb"))

    divData = chunks(csvData) # divide into 10000 rows each

    for chunk in divData:
        cur.execute('BEGIN TRANSACTION')

        for field1, field2, field3, field4, field5 in chunk:
            cur.execute('INSERT OR IGNORE INTO mytable (field2, field4) VALUES (?,?)', (field2, field4))

        cur.execute('COMMIT')

    print "\n Time Taken: %.3f sec" % (time.time()-t) 


回答3:

As it's been said (Chris and Sam), transactions do improve a lot insert performance.

Please, let me recommend another option, to use a suite of Python utilities to work with CSV, csvkit.

To install:

pip install csvkit

To solve your problem

csvsql --db sqlite:///path/to/file.db --insert --table mytable filecsv.txt


回答4:

Try using transactions.

begin    
insert 50,000 rows    
commit

That will commit data periodically rather than once per row.