Resampling Within a Pandas MultiIndex

2019-01-07 07:24发布

问题:

I have some hierarchical data which bottoms out into time series data which looks something like this:

df = pandas.DataFrame(
    {'value_a': values_a, 'value_b': values_b},
    index=[states, cities, dates])
df.index.names = ['State', 'City', 'Date']
df

                               value_a  value_b
State   City       Date                        
Georgia Atlanta    2012-01-01        0       10
                   2012-01-02        1       11
                   2012-01-03        2       12
                   2012-01-04        3       13
        Savanna    2012-01-01        4       14
                   2012-01-02        5       15
                   2012-01-03        6       16
                   2012-01-04        7       17
Alabama Mobile     2012-01-01        8       18
                   2012-01-02        9       19
                   2012-01-03       10       20
                   2012-01-04       11       21
        Montgomery 2012-01-01       12       22
                   2012-01-02       13       23
                   2012-01-03       14       24
                   2012-01-04       15       25

I'd like to perform time resampling per city, so something like

df.resample("2D", how="sum")

would output

                             value_a  value_b
State   City       Date                        
Georgia Atlanta    2012-01-01        1       21
                   2012-01-03        5       25
        Savanna    2012-01-01        9       29
                   2012-01-03       13       33
Alabama Mobile     2012-01-01       17       37
                   2012-01-03       21       41
        Montgomery 2012-01-01       25       45
                   2012-01-03       29       49

as is, df.resample('2D', how='sum') gets me

TypeError: Only valid with DatetimeIndex or PeriodIndex

Fair enough, but I'd sort of expect this to work:

>>> df.swaplevel('Date', 'State').resample('2D', how='sum')
TypeError: Only valid with DatetimeIndex or PeriodIndex

at which point I'm really running out of ideas... is there some way stack and unstack might be able to help me?

回答1:

pd.Grouper allows you to specify a "groupby instruction for a target object". In particular, you can use it to group by dates even if df.index is not a DatetimeIndex:

df.groupby(pd.Grouper(freq='2D', level=-1))

The level=-1 tells pd.Grouper to look for the dates in the last level of the MultiIndex. Moreover, you can use this in conjunction with other level values from the index:

level_values = df.index.get_level_values
result = (df.groupby([level_values(i) for i in [0,1]]
                      +[pd.Grouper(freq='2D', level=-1)]).sum())

It looks a bit awkward, but using_Grouper turns out to be much faster than my original suggestion, using_reset_index:

import numpy as np
import pandas as pd
import datetime as DT

def using_Grouper(df):
    level_values = df.index.get_level_values
    return (df.groupby([level_values(i) for i in [0,1]]
                       +[pd.Grouper(freq='2D', level=-1)]).sum())

def using_reset_index(df):
    df = df.reset_index(level=[0, 1])
    return df.groupby(['State','City']).resample('2D').sum()

def using_stack(df):
    # http://stackoverflow.com/a/15813787/190597
    return (df.unstack(level=[0,1])
              .resample('2D').sum()
              .stack(level=[2,1])
              .swaplevel(2,0))

def make_orig():
    values_a = range(16)
    values_b = range(10, 26)
    states = ['Georgia']*8 + ['Alabama']*8
    cities = ['Atlanta']*4 + ['Savanna']*4 + ['Mobile']*4 + ['Montgomery']*4
    dates = pd.DatetimeIndex([DT.date(2012,1,1)+DT.timedelta(days = i) for i in range(4)]*4)
    df = pd.DataFrame(
        {'value_a': values_a, 'value_b': values_b},
        index = [states, cities, dates])
    df.index.names = ['State', 'City', 'Date']
    return df

def make_df(N):
    dates = pd.date_range('2000-1-1', periods=N)
    states = np.arange(50)
    cities = np.arange(10)
    index = pd.MultiIndex.from_product([states, cities, dates], 
                                       names=['State', 'City', 'Date'])
    df = pd.DataFrame(np.random.randint(10, size=(len(index),2)), index=index,
                      columns=['value_a', 'value_b'])
    return df

df = make_orig()
print(using_Grouper(df))

yields

                               value_a  value_b
State   City       Date                        
Alabama Mobile     2012-01-01       17       37
                   2012-01-03       21       41
        Montgomery 2012-01-01       25       45
                   2012-01-03       29       49
Georgia Atlanta    2012-01-01        1       21
                   2012-01-03        5       25
        Savanna    2012-01-01        9       29
                   2012-01-03       13       33

Here is a benchmark comparing using_Grouper, using_reset_index, using_stack on a 5000-row DataFrame:

In [30]: df = make_df(10)

In [34]: len(df)
Out[34]: 5000

In [32]: %timeit using_Grouper(df)
100 loops, best of 3: 6.03 ms per loop

In [33]: %timeit using_stack(df)
10 loops, best of 3: 22.3 ms per loop

In [31]: %timeit using_reset_index(df)
1 loop, best of 3: 659 ms per loop


回答2:

An alternative using stack/unstack

df.unstack(level=[0,1]).resample('2D', how='sum').stack(level=[2,1]).swaplevel(2,0)

                               value_a  value_b
State   City       Date
Georgia Atlanta    2012-01-01        1       21
Alabama Mobile     2012-01-01       17       37
        Montgomery 2012-01-01       25       45
Georgia Savanna    2012-01-01        9       29
        Atlanta    2012-01-03        5       25
Alabama Mobile     2012-01-03       21       41
        Montgomery 2012-01-03       29       49
Georgia Savanna    2012-01-03       13       33

Notes:

  1. No idea about performance comparison
  2. Possible pandas bug - stack(level=[2,1]) worked, but stack(level=[1,2]) failed


回答3:

This works:

df.groupby(level=[0,1]).apply(lambda x: x.set_index('Date').resample('2D', how='sum'))

                               value_a  value_b
State   City       Date
Alabama Mobile     2012-01-01       17       37
                   2012-01-03       21       41
        Montgomery 2012-01-01       25       45
                   2012-01-03       29       49
Georgia Atlanta    2012-01-01        1       21
                   2012-01-03        5       25
        Savanna    2012-01-01        9       29
                   2012-01-03       13       33

If the Date column is strings, then convert to datetime beforehand:

df['Date'] = pd.to_datetime(df['Date'])


回答4:

I know this question is a few years old, but I had the same problem and came to a simpler solution that requires 1 line:

>>> import pandas as pd
>>> ts = pd.read_pickle('time_series.pickle')
>>> ts
xxxxxx1  yyyyyyyyyyyyyyyyyyyyyy1  2012-07-01     1
                                  2012-07-02    13
                                  2012-07-03     1
                                  2012-07-04     1
                                  2012-07-05    10
                                  2012-07-06     4
                                  2012-07-07    47
                                  2012-07-08     0
                                  2012-07-09     3
                                  2012-07-10    22
                                  2012-07-11     3
                                  2012-07-12     0
                                  2012-07-13    22
                                  2012-07-14     1
                                  2012-07-15     2
                                  2012-07-16     2
                                  2012-07-17     8
                                  2012-07-18     0
                                  2012-07-19     1
                                  2012-07-20    10
                                  2012-07-21     0
                                  2012-07-22     3
                                  2012-07-23     0
                                  2012-07-24    35
                                  2012-07-25     6
                                  2012-07-26     1
                                  2012-07-27     0
                                  2012-07-28     6
                                  2012-07-29    23
                                  2012-07-30     0
                                                ..
xxxxxxN  yyyyyyyyyyyyyyyyyyyyyyN  2014-06-02     0
                                  2014-06-03     1
                                  2014-06-04     0
                                  2014-06-05     0
                                  2014-06-06     0
                                  2014-06-07     0
                                  2014-06-08     2
                                  2014-06-09     0
                                  2014-06-10     0
                                  2014-06-11     0
                                  2014-06-12     0
                                  2014-06-13     0
                                  2014-06-14     0
                                  2014-06-15     0
                                  2014-06-16     0
                                  2014-06-17     0
                                  2014-06-18     0
                                  2014-06-19     0
                                  2014-06-20     0
                                  2014-06-21     0
                                  2014-06-22     0
                                  2014-06-23     0
                                  2014-06-24     0
                                  2014-06-25     4
                                  2014-06-26     0
                                  2014-06-27     1
                                  2014-06-28     0
                                  2014-06-29     0
                                  2014-06-30     1
                                  2014-07-01     0
dtype: int64
>>> ts.unstack().T.resample('W', how='sum').T.stack()
xxxxxx1  yyyyyyyyyyyyyyyyyyyyyy1  2012-06-25/2012-07-01      1
                                  2012-07-02/2012-07-08     76
                                  2012-07-09/2012-07-15     53
                                  2012-07-16/2012-07-22     24
                                  2012-07-23/2012-07-29     71
                                  2012-07-30/2012-08-05     38
                                  2012-08-06/2012-08-12    258
                                  2012-08-13/2012-08-19    144
                                  2012-08-20/2012-08-26    184
                                  2012-08-27/2012-09-02    323
                                  2012-09-03/2012-09-09    198
                                  2012-09-10/2012-09-16    348
                                  2012-09-17/2012-09-23    404
                                  2012-09-24/2012-09-30    380
                                  2012-10-01/2012-10-07    367
                                  2012-10-08/2012-10-14    163
                                  2012-10-15/2012-10-21    338
                                  2012-10-22/2012-10-28    252
                                  2012-10-29/2012-11-04    197
                                  2012-11-05/2012-11-11    336
                                  2012-11-12/2012-11-18    234
                                  2012-11-19/2012-11-25    143
                                  2012-11-26/2012-12-02    204
                                  2012-12-03/2012-12-09    296
                                  2012-12-10/2012-12-16    146
                                  2012-12-17/2012-12-23     85
                                  2012-12-24/2012-12-30    198
                                  2012-12-31/2013-01-06    214
                                  2013-01-07/2013-01-13    229
                                  2013-01-14/2013-01-20    192
                                                          ...
xxxxxxN  yyyyyyyyyyyyyyyyyyyyyyN  2013-12-09/2013-12-15      3
                                  2013-12-16/2013-12-22      0
                                  2013-12-23/2013-12-29      0
                                  2013-12-30/2014-01-05      1
                                  2014-01-06/2014-01-12      3
                                  2014-01-13/2014-01-19      6
                                  2014-01-20/2014-01-26     11
                                  2014-01-27/2014-02-02      0
                                  2014-02-03/2014-02-09      1
                                  2014-02-10/2014-02-16      4
                                  2014-02-17/2014-02-23      3
                                  2014-02-24/2014-03-02      1
                                  2014-03-03/2014-03-09      4
                                  2014-03-10/2014-03-16      0
                                  2014-03-17/2014-03-23      0
                                  2014-03-24/2014-03-30      9
                                  2014-03-31/2014-04-06      1
                                  2014-04-07/2014-04-13      1
                                  2014-04-14/2014-04-20      1
                                  2014-04-21/2014-04-27      2
                                  2014-04-28/2014-05-04      8
                                  2014-05-05/2014-05-11      7
                                  2014-05-12/2014-05-18      5
                                  2014-05-19/2014-05-25      2
                                  2014-05-26/2014-06-01      8
                                  2014-06-02/2014-06-08      3
                                  2014-06-09/2014-06-15      0
                                  2014-06-16/2014-06-22      0
                                  2014-06-23/2014-06-29      5
                                  2014-06-30/2014-07-06      1
dtype: int64

ts.unstack().T.resample('W', how='sum').T.stack() is all it took! Very easy and seems quite performant. The pickle I'm reading in is 331M, so this is a pretty beefy data structure; the resampling takes just a couple seconds on my MacBook Pro.



回答5:

I had the same issue, was breaking my head for a while, but then I read the documentation of the .resample function in the 0.19.2 docs, and I see there's a new kwarg called "level" that you can use to specify a level in a MultiIndex.

Edit: More details in the "What's New" section.



回答6:

I haven't checked the efficiency of this, but my instinctual way of performing datetime operations on a multi-index was by a kind of manual "split-apply-combine" process using a dictionary comprehension.

Assuming your DataFrame is unindexed. (You can do .reset_index() first), this works as follows:

  1. Group by the non-date columns
  2. Set "Date" as index and resample each chunk
  3. Reassemble using pd.concat

The final code looks like:

pd.concat({g: x.set_index("Date").resample("2D").mean()
                   for g, x in house.groupby(["State", "City"])})