I have a pair of arrays of equal size, I will call them keys and values.
For example:
K: V
1: 99
1: 100
1: 100
1: 100
1: 103
2: 103
2: 105
3: 45
3: 67
The keys are sorted and the values associated with each key are
sorted. How do I remove the value duplicates associated with each key
and its corresponding key?
That is, I want to compact the above to:
1: 99
1: 100
1: 103
2: 103 <-- This should remain, since key is different
2: 105
3: 45
3: 67
I looked at the stream compaction functions available in Thrust, but
was not able to find anything which does this. Is this possible with
Thrust? Or do I need to write my own kernel to mark the duplicates in
a stencil and then remove them?
The keys are sorted and the values associated with each key are also sorted. Thus, we can consider that the key-value pairs are sorted. thrust::unique
will work directly on this if it can see these 2 vectors as a single vector. This can be achieved by zipping up the 2 items (key-value) at each position into a single tuple using zip_iterator
.
Here is how to achieve this in-place and also trim the key-value vectors to only the unique elements:
typedef thrust::device_vector< int > IntVector;
typedef IntVector::iterator IntIterator;
typedef thrust::tuple< IntIterator, IntIterator > IntIteratorTuple;
typedef thrust::zip_iterator< IntIteratorTuple > ZipIterator;
IntVector keyVector;
IntVector valVector;
ZipIterator newEnd = thrust::unique( thrust::make_zip_iterator( thrust::make_tuple( keyVector.begin(), valVector.begin() ) ),
thrust::make_zip_iterator( thrust::make_tuple( keyVector.end(), valVector.end() ) ) );
IntIteratorTuple endTuple = newEnd.get_iterator_tuple();
keyVector.erase( thrust::get<0>( endTuple ), keyVector.end() );
valVector.erase( thrust::get<1>( endTuple ), valVector.end() );
If you want to compact and produce a separate result stream, you need to write your own binary predicate for your type which looks at both elements of the tuple. The thrust::zip_iterator
can be used to form a virtual tuple iterator from separate arrays.
A complete working example of how you might do it looks like this:
#include <iostream>
#include <thrust/tuple.h>
#include <thrust/functional.h>
#include <thrust/device_vector.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/unique.h>
// Binary predicate for a tuple pair
typedef thrust::tuple<int, int> tuple_t;
struct tupleEqual
{
__host__ __device__
bool operator()(tuple_t x, tuple_t y)
{
return ( (x.get<0>()== y.get<0>()) && (x.get<1>() == y.get<1>()) );
}
};
typedef thrust::device_vector<int>::iterator intIterator;
typedef thrust::tuple<intIterator, intIterator> intIteratorTuple;
typedef thrust::zip_iterator<intIteratorTuple> zipIterator;
typedef thrust::device_vector<tuple_t>::iterator tupleIterator;
int main(void)
{
thrust::device_vector<int> k(9), v(9);
thrust::device_vector<tuple_t> kvcopy(9);
k[0] = 1; k[1] = 1; k[2] = 1;
k[3] = 1; k[4] = 1; k[5] = 2;
k[6] = 2; k[7] = 3; k[8] = 3;
v[0] = 99; v[1] = 100; v[2] = 100;
v[3] = 100; v[4] = 103; v[5] = 103;
v[6] = 105; v[7] = 45; v[8] = 67;
zipIterator kvBegin(thrust::make_tuple(k.begin(),v.begin()));
zipIterator kvEnd(thrust::make_tuple(k.end(),v.end()));
thrust::copy(kvBegin, kvEnd, kvcopy.begin());
tupleIterator kvend =
thrust::unique(kvcopy.begin(), kvcopy.end(), tupleEqual());
for(tupleIterator kvi = kvcopy.begin(); kvi != kvend; kvi++) {
tuple_t r = *kvi;
std::cout << r.get<0>() << "," << r.get<1>() << std::endl;
}
return 0;
}
Stream compaction with a little bit of preparation will do. You can basically launch a thread for each key-value pair, check if the previous key-value pair equals, if not: set a flag (int = 1) in a separate array of the same size as those pairs. All other flags remain unset (int = 0). Then do stream compaction of the key-value pairs based on the flag array.