We have 3(three) xyz points that define a circle in 3D space, this circle needs to be converted into a polyline(for further rendering). I'm looking for a ready C or C++ function or free library that can do the job.
Don't understand why this was closed. And I can't even answer my own question there. Shame on you guys. But you will not stop the knowledge spreading!
There's a much simpler solution to find the circle parameters in real 3D, just take a look at the "barycentric coordinates" section in http://en.wikipedia.org/wiki/Circumscribed_circle .
You can extract the following optimized code from that:
// triangle "edges"
const Vector3d t = p2-p1;
const Vector3d u = p3-p1;
const Vector3d v = p3-p2;
// triangle normal
const Vector3d w = t.crossProduct(u);
const double wsl = w.getSqrLength();
if (wsl<10e-14) return false; // area of the triangle is too small (you may additionally check the points for colinearity if you are paranoid)
// helpers
const double iwsl2 = 1.0 / (2.0*wsl);
const double tt = t*t;
const double uu = u*u;
// result circle
Vector3d circCenter = p1 + (u*tt*(u*v) - t*uu*(t*v)) * iwsl2;
double circRadius = sqrt(tt * uu * (v*v) * iwsl2*0.5);
Vector3d circAxis = w / sqrt(wsl);
You can then calculate the points on the circle in real 3D too and e.g. draw them using GL_LINE_STRIP in OpenGL. This should be much faster than using the 2D sin/cos approach.
// find orthogonal vector to the circle axis
const Vector3d an = circAxis.getNormalized();
const Vector3d ao = Vector3d(4.0+an[0], 4.0+an[0]+an[1], 4.0+an[0]+an[1]+an[2]).crossProduct(an).getNormalized();
// 4x4 rotation matrix around the circle axis
const int steps = 360; // maybe adjust according to circle size on screen
Matrix4d R = makeRotMatrix4d(circCenter, circAxis, 2.0*M_PI/double(steps));
// one point on the circle
Vector3d cp = circCenter + ao*circRadius;
// rotate point on the circle
for (int i=0; i<steps; ++i)
{
circlePoints.push_back(cp);
cp = transformPoint(cp, R); // apply the matrix
}
For the creation of the transformation matrix (i.e. makeRotMatrix4d()) see http://paulbourke.net/geometry/rotate/ for example.
Please note that I did not test if the above code really compiles, but it should give you enough hints.
There is a nice article and a code sample on how to build a circle by 3 points in 2D, XY plane.
http://paulbourke.net/geometry/circlesphere/
http://paulbourke.net/geometry/circlesphere/Circle.cpp
To build a 3D circle we'll have to:
- rotate our 3 points into XY plane
- Calculate circle center
- build a circle in XY plane using the code in the article
- rotate it back into it's original plane
For rotations it is best to use quaternions.
To find a correct quaternion I looked at Ogre3d source code:
void Quaternion::FromAngleAxis (const Radian& rfAngle, const Vector3& rkAxis)
There is one more useful function there:
Quaternion getRotationTo(const Vector3& dest, const Vector3& fallbackAxis = Vector3::ZERO) const
But I didn't use it.
For quaterions and vectors I used our own classes. Here is the full source code of the function that does the job:
bool IsPerpendicular(Point3d *pt1, Point3d *pt2, Point3d *pt3);
double CalcCircleCenter(Point3d *pt1, Point3d *pt2, Point3d *pt3, Point3d *center);
void FindCircleCenter(const Point3d *V1, const Point3d *V2, const Point3d *V3, Point3d *center)
{
Point3d *pt1=new Point3d(*V1);
Point3d *pt2=new Point3d(*V2);
Point3d *pt3=new Point3d(*V3);
if (!IsPerpendicular(pt1, pt2, pt3) ) CalcCircleCenter(pt1, pt2, pt3, center);
else if (!IsPerpendicular(pt1, pt3, pt2) ) CalcCircleCenter(pt1, pt3, pt2, center);
else if (!IsPerpendicular(pt2, pt1, pt3) ) CalcCircleCenter(pt2, pt1, pt3, center);
else if (!IsPerpendicular(pt2, pt3, pt1) ) CalcCircleCenter(pt2, pt3, pt1, center);
else if (!IsPerpendicular(pt3, pt2, pt1) ) CalcCircleCenter(pt3, pt2, pt1, center);
else if (!IsPerpendicular(pt3, pt1, pt2) ) CalcCircleCenter(pt3, pt1, pt2, center);
else {
delete pt1;
delete pt2;
delete pt3;
return;
}
delete pt1;
delete pt2;
delete pt3;
}
bool IsPerpendicular(Point3d *pt1, Point3d *pt2, Point3d *pt3)
// Check the given point are perpendicular to x or y axis
{
double yDelta_a= pt2->y - pt1->y;
double xDelta_a= pt2->x - pt1->x;
double yDelta_b= pt3->y - pt2->y;
double xDelta_b= pt3->x - pt2->x;
// checking whether the line of the two pts are vertical
if (fabs(xDelta_a) <= 0.000000001 && fabs(yDelta_b) <= 0.000000001){
return false;
}
if (fabs(yDelta_a) <= 0.0000001){
return true;
}
else if (fabs(yDelta_b) <= 0.0000001){
return true;
}
else if (fabs(xDelta_a)<= 0.000000001){
return true;
}
else if (fabs(xDelta_b)<= 0.000000001){
return true;
}
else
return false ;
}
double CalcCircleCenter(Point3d *pt1, Point3d *pt2, Point3d *pt3, Point3d *center)
{
double yDelta_a = pt2->y - pt1->y;
double xDelta_a = pt2->x - pt1->x;
double yDelta_b = pt3->y - pt2->y;
double xDelta_b = pt3->x - pt2->x;
if (fabs(xDelta_a) <= 0.000000001 && fabs(yDelta_b) <= 0.000000001){
center->x= 0.5*(pt2->x + pt3->x);
center->y= 0.5*(pt1->y + pt2->y);
center->z= pt1->z;
return 1;
}
// IsPerpendicular() assure that xDelta(s) are not zero
double aSlope=yDelta_a/xDelta_a; //
double bSlope=yDelta_b/xDelta_b;
if (fabs(aSlope-bSlope) <= 0.000000001){ // checking whether the given points are colinear.
return -1;
}
// calc center
center->x= (aSlope*bSlope*(pt1->y - pt3->y) + bSlope*(pt1->x + pt2 ->x)
- aSlope*(pt2->x+pt3->x) )/(2* (bSlope-aSlope) );
center->y = -1*(center->x - (pt1->x+pt2->x)/2)/aSlope + (pt1->y+pt2->y)/2;
return 1;
}
//! Builds a circle in 3D space by 3 points on it and an optional center
void buildCircleBy3Pt(const float *pt1,
const float *pt2,
const float *pt3,
const float *c, // center, can be NULL
std::vector<float> *circle)
{
/* Get the normal vector to the triangle formed by 3 points
Calc a rotation quaternion from that normal to the 0,0,1 axis
Rotate 3 points using quaternion. Points will be in XY plane
Build a circle by 3 points on XY plane
Rotate a circle back into original plane using quaternion
*/
Point3d p1(pt1[0], pt1[1], pt1[2]);
Point3d p2(pt2[0], pt2[1], pt2[2]);
Point3d p3(pt3[0], pt3[1], pt3[2]);
Point3d center;
if (c)
{
center.set(c[0], c[1], c[2]);
}
const Vector3d p2top1 = p1 - p2;
const Vector3d p2top3 = p3 - p2;
const Vector3d circle_normal = p2top1.crossProduct(p2top3).normalize();
const Vector3d xy_normal(0, 0, 1);
Quaternion rot_quat;
// building rotation quaternion
{
// Rotation axis around which we will rotate our circle into XY plane
Vector3d rot_axis = xy_normal.crossProduct(circle_normal).normalize();
const double rot_angle = xy_normal.angleTo(circle_normal); // radians
const double w = cos(rot_angle * 0.5);
rot_axis *= sin(rot_angle * 0.5);
rot_quat.set(w, rot_axis.x, rot_axis.y, rot_axis.z);
}
Quaternion rot_back_quat;
// building backward rotation quaternion, same as prev. but -angle
{
const double rot_angle = -(xy_normal.angleTo(circle_normal)); // radians
const double w_back = cos(rot_angle * 0.5);
Vector3d rot_back_axis = xy_normal.crossProduct(circle_normal).normalize();
rot_back_axis *= sin(rot_angle * 0.5);
rot_back_quat.set(w_back, rot_back_axis.x, rot_back_axis.y, rot_back_axis.z);
}
rot_quat.rotate(p1);
rot_quat.rotate(p2);
rot_quat.rotate(p3);
rot_quat.rotate(center);
if (!c)
{
// calculate 2D center
FindCircleCenter(&p1, &p2, &p3, ¢er);
}
// calc radius
const double radius = center.distanceTo(p1);
const float DEG2RAD = 3.14159f / 180.0f;
// build circle
for (int i = 0; i < 360; ++i)
{
float degInRad = i * DEG2RAD;
Point3d pt(cos(degInRad) * radius + center.x, sin(degInRad) * radius + center.y, 0);
// rotate the point back into original plane
rot_back_quat.rotate(pt);
circle->push_back(pt.x);
circle->push_back(pt.y);
circle->push_back(pt.z);
}
}