I would like to implement a function which finds all possible paths to all possible vertices from a source vertex V in a directed cyclic graph G.
The performance doesn't matter now, I just would like to understand the algorithm. I have read the definition of the Depth-first search algorithm, but I don't have full comprehension of what to do.
I don't have any completed piece of code to provide here, because I am not sure how to:
- store the results (along with A->B->C-> we should also store A->B and A->B->C);
- represent the graph (digraph? list of tuples?);
- how many recursions to use (work with each adjacent vertex?).
How can I find all possible paths form one given source vertex in a directed cyclic graph in Erlang?
UPD: Based on the answers so far I have to redefine the graph definition: it is a non-acyclic graph. I know that if my recursive function hits a cycle it is an indefinite loop. To avoid that, I can just check if a current vertex is in the list of the resulting path - if yes, I stop traversing and return the path.
UPD2: Thanks for thought provoking comments! Yes, I need to find all simple paths that do not have loops from one source vertex to all the others.
In a graph like this:
with the source vertex A the algorithm should find the following paths:
- A,B
- A,B,C
- A,B,C,D
- A,D
- A,D,C
- A,D,C,B
The following code does the job, but it is unusable with graphs that have more that 20 vertices (I guess it is something wrong with recursion - takes too much memory, never ends):
dfs(Graph,Source) ->
?DBG("Started to traverse graph~n", []),
Neighbours = digraph:out_neighbours(Graph,Source),
?DBG("Entering recursion for source vertex ~w~n", [Source]),
dfs(Neighbours,[Source],[],Graph,Source),
ok.
dfs([],Paths,Result,_Graph,Source) ->
?DBG("There are no more neighbours left for vertex ~w~n", [Source]),
Result;
dfs([Neighbour|Other_neighbours],Paths,Result,Graph,Source) ->
?DBG("///The neighbour to check is ~w, other neighbours are: ~w~n",[Neighbour,Other_neighbours]),
?DBG("***Current result: ~w~n",[Result]),
New_result = relax_neighbours(Neighbour,Paths,Result,Graph,Source),
dfs(Other_neighbours,Paths,New_result,Graph,Source).
relax_neighbours(Neighbour,Paths,Result,Graph,Source) ->
case lists:member(Neighbour,Paths) of
false ->
?DBG("Found an unvisited neighbour ~w, path is: ~w~n",[Neighbour,Paths]),
Neighbours = digraph:out_neighbours(Graph,Neighbour),
?DBG("The neighbours of the unvisited vertex ~w are ~w, path is:
~w~n",[Neighbour,Neighbours,[Neighbour|Paths]]),
dfs(Neighbours,[Neighbour|Paths],Result,Graph,Source);
true ->
[Paths|Result]
end.
UPD3:
The problem is that the regular depth-first search algorithm will go one of the to paths first: (A,B,C,D) or (A,D,C,B) and will never go the second path.
In either case it will be the only path - for example, when the regular DFS backtracks from (A,B,C,D) it goes back up to A and checks if D (the second neighbour of A) is visited. And since the regular DFS maintains a global state for each vertex, D would have 'visited' state.
So, we have to introduce a recursion-dependent state - if we backtrack from (A,B,C,D) up to A, we should have (A,B,C,D) in the list of the results and we should have D marked as unvisited as at the very beginning of the algorithm.
I have tried to optimize the solution to tail-recursive one, but still the running time of the algorithm is unfeasible - it takes about 4 seconds to traverse a tiny graph of 16 vertices with 3 edges per vertex:
dfs(Graph,Source) ->
?DBG("Started to traverse graph~n", []),
Neighbours = digraph:out_neighbours(Graph,Source),
?DBG("Entering recursion for source vertex ~w~n", [Source]),
Result = ets:new(resulting_paths, [bag]),
Root = Source,
dfs(Neighbours,[Source],Result,Graph,Source,[],Root).
dfs([],Paths,Result,_Graph,Source,_,_) ->
?DBG("There are no more neighbours left for vertex ~w, paths are ~w, result is ~w~n", [Source,Paths,Result]),
Result;
dfs([Neighbour|Other_neighbours],Paths,Result,Graph,Source,Recursion_list,Root) ->
?DBG("~w *Current source is ~w~n",[Recursion_list,Source]),
?DBG("~w Checking neighbour _~w_ of _~w_, other neighbours are: ~w~n",[Recursion_list,Neighbour,Source,Other_neighbours]),
? DBG("~w Ready to check for visited: ~w~n",[Recursion_list,Neighbour]),
case lists:member(Neighbour,Paths) of
false ->
?DBG("~w Found an unvisited neighbour ~w, path is: ~w~n",[Recursion_list,Neighbour,Paths]),
New_paths = [Neighbour|Paths],
?DBG("~w Added neighbour to paths: ~w~n",[Recursion_list,New_paths]),
ets:insert(Result,{Root,Paths}),
Neighbours = digraph:out_neighbours(Graph,Neighbour),
?DBG("~w The neighbours of the unvisited vertex ~w are ~w, path is: ~w, recursion:~n",[Recursion_list,Neighbour,Neighbours,[Neighbour|Paths]]),
dfs(Neighbours,New_paths,Result,Graph,Neighbour,[[[]]|Recursion_list],Root);
true ->
?DBG("~w The neighbour ~w is: already visited, paths: ~w, backtracking to other neighbours:~n",[Recursion_list,Neighbour,Paths]),
ets:insert(Result,{Root,Paths})
end,
dfs(Other_neighbours,Paths,Result,Graph,Source,Recursion_list,Root).
Any ideas to run this in acceptable time?