可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have an abstract base class Base
which has some common properties, and many derived ones which implement different logic but rarely have additional fields.
public abstract Base
{
protected int field1;
protected int field2;
....
protected Base() { ... }
}
Sometimes I need to clone the derived class. So my guess was, just make a virtual Clone
method in my base class and only override it in derived classes that have additional fields, but of course my Base
class wouldn't be abstract anymore (which isn't a problem since it only has a protected
constructor).
public Base
{
protected int field1;
protected int field2;
....
protected Base() { ... }
public virtual Base Clone() { return new Base(); }
}
public A : Base { }
public B : Base { }
The thing is, since I can't know the type of the derived class in my Base one, wouldn't this lead to have a Base
class instance even if I call it on the derived ones ? (a.Clone();
) (actually after a test this is what is happening but perhaps my test wasn't well designed that's why I have a doubt about it)
Is there a good way (pattern) to implement a base Clone
method that would work as I expect it or do I have to write the same code in every derived class (I'd really like to avoid that...)
Thanks for your help
回答1:
Just override the Clone
and have another method to CreateInstance
then do your stuff.
This way you could have only Base
class avoiding generics.
public Base
{
protected int field1;
protected int field2;
....
protected Base() { ... }
public virtual Base Clone()
{
var bc = CreateInstanceForClone();
bc.field1 = 1;
bc.field2 = 2;
return bc;
}
protected virtual Base CreateInstanceForClone()
{
return new Base();
}
}
public A : Base
{
protected int fieldInA;
public override Base Clone()
{
var a = (A)base.Clone();
a.fieldInA =5;
return a;
}
protected override Base CreateInstanceForClone()
{
return new A();
}
}
回答2:
You can add a copy constructor to your base class:
public abstract Base
{
protected int field1;
protected int field2;
protected Base() { ... }
protected Base(Base copyThis) : this()
{
this.field1 = copyThis.field1;
this.field2 = copyThis.field2;
}
public abstract Base Clone();
}
public Child1 : Base
{
protected int field3;
public Child1 () : base() { ... }
protected Child1 (Child1 copyThis) : base(copyThis)
{
this.field3 = copyThis.field3;
}
public override Base Clone() { return new Child1(this); }
}
public Child2 : Base
{
public Child2 () : base() { ... }
protected Child (Child copyThis) : base(copyThis)
{ }
public override Base Clone() { return new Child2(this); }
}
public Child3 : Base
{
protected int field4;
public Child3 () : base() { ... }
protected Child3 (Child3 copyThis) : base(copyThis)
{
this.field4 = copyThis.field4;
}
public override Base Clone()
{
var result = new Child1(this);
result.field1 = result.field2 - result.field1;
}
}
回答3:
You could do something like this:
public class Base<T> where T: Base<T>, new()
{
public virtual T Clone()
{
T copy = new T();
copy.Id = this.Id;
return copy;
}
public string Id { get; set; }
}
public class A : Base<A>
{
public override A Clone()
{
A copy = base.Clone();
copy.Name = this.Name;
return copy;
}
public string Name { get; set; }
}
private void Test()
{
A a = new A();
A aCopy = a.Clone();
}
But i doubt that it will bring something useful. I'll create another example..
回答4:
I got another idea using the Activator class:
public class Base
{
public virtual object Clone()
{
Base copy = (Base)Activator.CreateInstance(this.GetType());
copy.Id = this.Id;
return copy;
}
public string Id { get; set; }
}
public class A : Base
{
public override object Clone()
{
A copy = (A)base.Clone();
copy.Name = this.Name;
return copy;
}
public string Name { get; set; }
}
A a = new A();
A aCopy = (A)a.Clone();
But i would go for the Alexander Simonov answer.
回答5:
I did something similar as Alexander Simonov, but perhaps simpler. The idea is (as I said in a comment) to have just one Clone()
in the base class and leave all the work to a virtual CloneImpl()
which each class defines as needed, relying on the CloneImpl()
s of the base classes.
Creation of the proper type is left to C#'s MemberwiseClone()
which will do whatever it takes for the object that's calling. This also obviates the need for a default constructor in any of the classes (none is ever called).
using System;
namespace CloneImplDemo
{
// dummy data class
class DeepDataT : ICloneable
{
public int i;
public object Clone() { return MemberwiseClone(); }
}
class Base: ICloneable
{
protected virtual Base CloneImpl()
{
// Neat: Creates the type of whatever object is calling.
// Also obviates the need for default constructors
// (Neither Derived1T nor Derived2T have one.)
return (Base)MemberwiseClone();
}
public object Clone()
{
// Calls whatever CloneImpl the
// actual calling type implements.
return CloneImpl();
}
}
// Note: No Clone() re-implementation
class Derived1T : Base
{
public Derived1T(int i) { der1Data.i = i; }
public DeepDataT der1Data = new DeepDataT();
protected override Base CloneImpl()
{
Derived1T cloned = (Derived1T)base.CloneImpl();
cloned.der1Data = (DeepDataT)der1Data.Clone();
return cloned;
}
}
// Note: No Clone() re-implementation.
class Derived2T : Derived1T
{
public Derived2T(int i1, int i2) : base(i1)
{
der2Data.i = i2;
}
public string txt = string.Empty; // copied by MemberwiseClone()
public DeepDataT der2Data = new DeepDataT();
protected override Base CloneImpl()
{
Derived2T cloned = (Derived2T)base.CloneImpl();
// base members have been taken care of in the base impl.
// we only add our own stuff.
cloned.der2Data = (DeepDataT)der2Data.Clone();
return cloned;
}
}
class Program
{
static void Main(string[] args)
{
var obj1 = new Derived2T(1,2);
obj1.txt = "this is obj1";
var obj2 = (Derived2T)obj1.Clone();
obj2.der1Data.i++;
obj2.der2Data.i++; // changes value.
obj2.txt = "this is a deep copy"; // replaces reference.
// the values for i should differ because
// we performed a deep copy of the DeepDataT members.
Console.WriteLine("obj1 txt, i1, i2: " + obj1.txt + ", " + obj1.der1Data.i + ", " + obj1.der2Data.i);
Console.WriteLine("obj2 txt, i1, i2: " + obj2.txt + ", " + obj2.der1Data.i + ", " + obj2.der2Data.i);
}
}
}
Output:
obj1 txt, i1, i2: this is obj1, 1, 2
obj2 txt, i1, i2: this is a deep copy, 2, 3
回答6:
If performance is not important for your case, you can simplify your code by creating just one general clone method which can clone whatever to whatever if properties are same:
Base base = new Base(){...};
Derived derived = XmlClone.CloneToDerived<Base, Derived>(base);
public static class XmlClone
{
public static D CloneToDerived<T, D>(T pattern)
where T : class
{
using (var ms = new MemoryStream())
{
using (XmlWriter writer = XmlWriter.Create(ms))
{
Type typePattern = typeof(T);
Type typeTarget = typeof(D);
XmlSerializer xmlSerializerIn = new XmlSerializer(typePattern);
xmlSerializerIn.Serialize(writer, pattern);
ms.Position = 0;
XmlSerializer xmlSerializerOut = new XmlSerializer(typeTarget, new XmlRootAttribute(typePattern.Name));
D copy = (D)xmlSerializerOut.Deserialize(ms);
return copy;
}
}
}
}
回答7:
Found this question while trying to solve this exact problem, had some fun with LINQPad while at it.
Proof of concept:
void Main()
{
Person p = new Person() { Name = "Person Name", Dates = new List<System.DateTime>() { DateTime.Now } };
new Manager()
{
Subordinates = 5
}.Apply(p).Dump();
}
public static class Ext
{
public static TResult Apply<TResult, TSource>(this TResult result, TSource source) where TResult: TSource
{
var props = typeof(TSource).GetProperties(BindingFlags.Public | BindingFlags.Instance);
foreach (var p in props)
{
p.SetValue(result, p.GetValue(source));
}
return result;
}
}
class Person
{
public string Name { get; set; }
public List<DateTime> Dates { get; set; }
}
class Manager : Person
{
public int Subordinates { get; set; }
}