I saw these posts
GGally::ggpairs plot without gridlines when plotting correlation coefficient
use ggpairs to create this plot
After reading I was able to implement this hack https://github.com/tonytonov/ggally/blob/master/R/gg-plots.r and my plot looks like this
I think this is a good result but I cannot change the colors.
A MWE is this
library(ggally)
# load the hack
source("ggally_mod.R")
# I saved https://github.com/tonytonov/ggally/blob/master/R/gg-plots.r as "ggally_mod.R"
assignInNamespace("ggally_cor", ggally_cor, "GGally")
ggpairs(swiss)
Now I want to run
ggpairs(swiss,
lower=list(continuous="smooth", wrap=c(colour="blue")),
diag=list(continuous="bar", wrap=c(colour="blue")))
But the colours remain the same. Is there a way to change the colours now that params is not working anymore?
You are not using wrap
correctly -
see the vignette for details. Also for the diagonal you now have to use the function barDiag
(but ggpairs
gives very helpful errors to tell this)
So for your example, we can change the colour
of the points in the lower
panels and the fill
of the bars below
library(GGally)
library(ggplot2)
ggpairs(swiss[1:3],
lower=list(continuous=wrap("smooth", colour="blue")),
diag=list(continuous=wrap("barDiag", fill="blue")))
However, as the colour of the smooth is hard coded (see ggally_smooth
), to change its
colour you need to define you own function to pass. So from here
my_fn <- function(data, mapping, pts=list(), smt=list(), ...){
ggplot(data = data, mapping = mapping, ...) +
do.call(geom_point, pts) +
do.call(geom_smooth, smt)
}
# Plot
ggpairs(swiss[1:4],
lower = list(continuous =
wrap(my_fn,
pts=list(size=2, colour="red"),
smt=list(method="lm", se=F, size=5, colour="blue"))),
diag=list(continuous=wrap("barDiag", fill="blue")))
In a similar way, here is a way to define a new upper correlation function (similar to what you have)
cor_fun <- function(data, mapping, method="pearson", ndp=2, sz=5, stars=TRUE, ...){
data <- na.omit(data[,c(as.character(mapping$x), as.character(mapping$y))])
x <- data[,as.character(mapping$x)]
y <- data[,as.character(mapping$y)]
corr <- cor.test(x, y, method=method)
est <- corr$estimate
lb.size <- sz* abs(est)
if(stars){
stars <- c("***", "**", "*", "")[findInterval(corr$p.value, c(0, 0.001, 0.01, 0.05, 1))]
lbl <- paste0(round(est, ndp), stars)
}else{
lbl <- round(est, ndp)
}
ggplot(data=data, mapping=mapping) +
annotate("text", x=mean(x), y=mean(y), label=lbl, size=lb.size,...)+
theme(panel.grid = element_blank())
}
ggpairs(swiss,
lower=list(continuous=wrap("smooth", colour="blue")),
diag=list(continuous=wrap("barDiag", fill="blue")),
upper=list(continuous=cor_fun))
You can modify some parameters of GGally functions by using wrap()
as explained here. But not all parameters are named for wrap
to be useful. For example, if you try to change default palette with a manual colour scale within wrap
you may get an error like Error in wrap("cor",…) all parameters must be named arguments
. In that case you may build custom functions to generate any sort of ggplot object appropriate for the upper, lower or diagonal sections of the matrix plot.
However, there is a (safer) shortcut if you want to change some parameters (not named in GGally functions to be wrap
ped) without creating a custom function to design a ggplot object. You just call an already existing GGally function within a function call, adding the extra ggplot parameters. For example, to provide a manual scale colour for three categories (in the new column swiss$groups):
swiss$groups <- gl(n = 3, k = 1, length = nrow(swiss), labels = c("A", "B", "C"))
ggpairs(swiss, mapping = aes(colour = groups), columns = 1:6,
upper = list(continuous = function(data, mapping, ...) {
ggally_cor(data = data, mapping = mapping, size = 2) + scale_colour_manual(values = c("black", "dark green", "red"))}),
lower = list(continuous = function(data, mapping, ...) {
ggally_smooth(data = data, mapping = mapping, alpha = .2) + scale_colour_manual(values = c("black", "dark green", "red"))}),
diag = list(continuous = function(data, mapping, ...) {
ggally_barDiag(data = data, mapping = mapping, alpha = .5) + scale_fill_manual(values = c("black", "dark green", "red"))}))