I'm trying to use CPS to simplify control-flow implementation in my Python interpreter. Specifically, when implementing return
/break
/continue
, I have to store state and unwind manually, which is tedious. I've read that it's extraordinarily tricky to implement exception handling in this way. What I want is for each eval
function to be able to direct control flow to either the next instruction, or to a different instruction entirely.
Some people with more experience than me suggested looking into CPS as a way to deal with this properly. I really like how it simplifies control flow in the interpreter, but I'm not sure how much I need to actually do in order to accomplish this.
Do I need to run a CPS transform on the AST? Should I lower this AST into a lower-level IR that is smaller and then transform that?
Do I need to update the evaluator to accept the success continuation everywhere? (I'm assuming so).
I think I generally understand the CPS transform: the goal is to thread the continuation through the entire AST, including all expressions.
I'm also a bit confused where the Cont
monad fits in here, as the host language is Haskell.
Edit: here's a condensed version of the AST in question. It is a 1-1 mapping of Python statements, expressions, and built-in values.
data Statement
= Assignment Expression Expression
| Expression Expression
| Break
| While Expression [Statement]
data Expression
| Attribute Expression String
| Constant Value
data Value
= String String
| Int Integer
| None
To evaluate statements, I use eval
:
eval (Assignment (Variable var) expr) = do
value <- evalExpr expr
updateSymbol var value
eval (Expression e) = do
_ <- evalExpr e
return ()
To evaluate expressions, I use evalExpr
:
evalExpr (Attribute target name) = do
receiver <- evalExpr target
attribute <- getAttr name receiver
case attribute of
Just v -> return v
Nothing -> fail $ "No attribute " ++ name
evalExpr (Constant c) = return c
What motivated the whole thing was the shenanigans required for implementing break. The break definition is reasonable, but what it does to the while definition is a bit much:
eval (Break) = do
env <- get
when (loopLevel env <= 0) (fail "Can only break in a loop!")
put env { flow = Breaking }
eval (While condition block) = do
setup
loop
cleanup
where
setup = do
env <- get
let level = loopLevel env
put env { loopLevel = level + 1 }
loop = do
env <- get
result <- evalExpr condition
when (isTruthy result && flow env == Next) $ do
evalBlock block
-- Pretty ugly! Eat continue.
updatedEnv <- get
when (flow updatedEnv == Continuing) $ put updatedEnv { flow = Next }
loop
cleanup = do
env <- get
let level = loopLevel env
put env { loopLevel = level - 1 }
case flow env of
Breaking -> put env { flow = Next }
Continuing -> put env { flow = Next }
_ -> return ()
I am sure there are more simplifications that can be done here, but the core problem is one of stuffing state somewhere and manually winding out. I'm hoping that CPS will let me stuff book-keeping (like loop exit points) into state and just use those when I need them.
I dislike the split between statements and expressions and worry it might make the CPS transform more work.