Do you know a good implementation of a (binary) segment tree in Java?
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
回答1:
This has been implemented within the open source Layout Management SW Package project
Here is a link to the sub package
You might find the code useful. I have neither verified it nor run it and I cannot find the license the code is provided under from a quick search of the code and website so Caveat Emptor.
You may be able to contact the authors but the last activity appears to have been August 2008.
回答2:
public class SegmentTree {
public static class STNode {
int leftIndex;
int rightIndex;
int sum;
STNode leftNode;
STNode rightNode;
}
static STNode constructSegmentTree(int[] A, int l, int r) {
if (l == r) {
STNode node = new STNode();
node.leftIndex = l;
node.rightIndex = r;
node.sum = A[l];
return node;
}
int mid = (l + r) / 2;
STNode leftNode = constructSegmentTree(A, l, mid);
STNode rightNode = constructSegmentTree(A, mid+1, r);
STNode root = new STNode();
root.leftIndex = leftNode.leftIndex;
root.rightIndex = rightNode.rightIndex;
root.sum = leftNode.sum + rightNode.sum;
root.leftNode = leftNode;
root.rightNode = rightNode;
return root;
}
static int getSum(STNode root, int l, int r) {
if (root.leftIndex >= l && root.rightIndex <= r) {
return root.sum;
}
if (root.rightIndex < l || root.leftIndex > r) {
return 0;
}
return getSum(root.leftNode, l, r) + getSum(root.rightNode, l, r);
}
/**
*
* @param root
* @param index index of number to be updated in original array
* @param newValue
* @return difference between new and old values
*/
static int updateValueAtIndex(STNode root, int index, int newValue) {
int diff = 0;
if(root.leftIndex==root.rightIndex && index == root.leftIndex) {
// We actually reached to the leaf node to be updated
diff = newValue-root.sum;
root.sum=newValue;
return diff;
}
int mid = (root.leftIndex + root.rightIndex) / 2;
if (index <= mid) {
diff= updateValueAtIndex(root.leftNode, index, newValue);
} else {
diff= updateValueAtIndex(root.rightNode, index, newValue);
}
root.sum+=diff;
return diff;
}
}
回答3:
Algo and unit tests:
public class NumArrayTest {
@Test
public void testUpdateSumRange_WithEmpty() throws Exception {
NumArray numArray = new NumArray(new int[]{});
assertEquals(0, numArray.sumRange(0, 0));
}
@Test
public void testUpdateSumRange_WithSingleton() throws Exception {
NumArray numArray = new NumArray(new int[]{1});
assertEquals(1, numArray.sumRange(0, 0));
numArray.update(0, 2);
assertEquals(2, numArray.sumRange(0, 0));
}
@Test
public void testUpdateSumRange_WithPairElements() throws Exception {
NumArray numArray = new NumArray(new int[]{1,2,3,4,5,6});
assertEquals(12, numArray.sumRange(2, 4));
numArray.update(3, 2);
assertEquals(10, numArray.sumRange(2, 4));
}
@Test
public void testUpdateSumRange_WithInPairElements() throws Exception {
NumArray numArray = new NumArray(new int[]{1,2,3,4,5,6,7});
assertEquals(12, numArray.sumRange(2, 4));
numArray.update(3, 2);
assertEquals(10, numArray.sumRange(2, 4));
}
}
public class NumArray {
private final Node root;
private static class Node {
private final int begin;
private final int end;
private final Node left;
private final Node right;
private int sum;
public Node(int begin, int end, int sum, Node left, Node right) {
this.begin = begin;
this.end = end;
this.sum = sum;
this.left = left;
this.right = right;
}
public boolean isSingle() {
return begin == end;
}
public boolean contains(int i) {
return i >= begin && i <= end;
}
public boolean inside(int i, int j) {
return i <= begin && j >= end;
}
public boolean outside(int i, int j) {
return i > end || j < begin;
}
public void setSum(int sum) {
this.sum = sum;
}
}
public NumArray(int[] nums) {
if (nums.length == 0) {
root = null;
} else {
root = buildNode(nums, 0, nums.length - 1);
}
}
private Node buildNode(int[] nums, int begin, int end) {
if (begin == end) {
return new Node(begin, end, nums[begin], null, null);
} else {
int mid = (begin + end) / 2 + 1;
Node left = buildNode(nums, begin, mid - 1);
Node right = buildNode(nums, mid, end);
return new Node(begin, end, left.sum + right.sum, left, right);
}
}
public void update(int i, int val) {
if (root == null) {
return;
}
if (!root.contains(i)) {
throw new IllegalArgumentException("i not in range");
}
update(root, i, val);
}
private int update(Node node, int i, int val) {
if (node.isSingle()) {
node.setSum(val);
} else {
Node nodeToUpdate = node.left.contains(i) ? node.left : node.right;
int withoutNode = node.sum - nodeToUpdate.sum;
node.setSum(withoutNode + update(nodeToUpdate, i, val));
}
return node.sum;
}
public int sumRange(int i, int j) {
if (root == null) {
return 0;
}
return sumRange(root, i, j);
}
private int sumRange(Node node, int i, int j) {
if (node.outside(i, j)) {
return 0;
} else if (node.inside(i, j)) {
return node.sum;
} else {
return sumRange(node.left, i, j) + sumRange(node.right, i, j);
}
}
}
回答4:
Here it is:
import java.util.Scanner;
public class MinimumSegmentTree {
static Scanner in = new Scanner(System.in);
public static void main(String[] args) {
final int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
int sizeOfSegmentTree = (int) Math.pow(2, Math.ceil(Math.log10(n) / Math.log10(2)));
sizeOfSegmentTree = 2*sizeOfSegmentTree-1;
// System.out.println(sizeOfSegmentTree);
int[] segmentTree = new int[sizeOfSegmentTree];
formSegmentTree(a, segmentTree, 0, n-1, 0);
// for(int i=0; i<sizeOfSegmentTree; i++){
// System.out.print(segmentTree[i]+" ");
// }
// System.out.println();
final int q = in.nextInt();
for (int i = 0; i < q; i++) {
int s, e;
s = in.nextInt();
e = in.nextInt();
int minOverRange = getMinimumOverRange(segmentTree, s, e, 0, n-1, 0);
System.out.println(minOverRange);
}
}
private static int getMinimumOverRange(int[] segmentTree, int qs, int qe, int s, int e, int pos) {
if (qs <= s && qe >= e) {
return segmentTree[pos];
}
if (qs > e || s > qe) {
return 10000000;
}
int mid = (s + e) / 2;
return Math.min(getMinimumOverRange(segmentTree, qs, qe, s, mid, 2 * pos + 1),
getMinimumOverRange(segmentTree, qs, qe, mid+1, e, 2 * pos + 2));
}
private static void formSegmentTree(int[] a, int[] segmentTree, int s, int e, int pos) {
if (e - s == 0) {
segmentTree[pos] = a[s];
return;
}
int mid = (s + e) / 2;
formSegmentTree(a, segmentTree, s, mid, 2 * pos + 1);
formSegmentTree(a, segmentTree, mid+1, e, 2 * pos + 2);
segmentTree[pos] = Math.min(segmentTree[2 * pos + 1], segmentTree[2 * pos + 2]);
}
}