Answering this question it turned out that df.groupby(...).agg(set)
and df.groupby(...).agg(lambda x: set(x))
are producing different results.
Data:
df = pd.DataFrame({
'user_id': [1, 2, 3, 4, 1, 2, 3],
'class_type': ['Krav Maga', 'Yoga', 'Ju-jitsu', 'Krav Maga',
'Ju-jitsu','Krav Maga', 'Karate'],
'instructor': ['Bob', 'Alice','Bob', 'Alice','Alice', 'Alice','Bob']})
Demo:
In [36]: df.groupby('user_id').agg(lambda x: set(x))
Out[36]:
class_type instructor
user_id
1 {Krav Maga, Ju-jitsu} {Alice, Bob}
2 {Yoga, Krav Maga} {Alice}
3 {Ju-jitsu, Karate} {Bob}
4 {Krav Maga} {Alice}
In [37]: df.groupby('user_id').agg(set)
Out[37]:
class_type instructor
user_id
1 {user_id, class_type, instructor} {user_id, class_type, instructor}
2 {user_id, class_type, instructor} {user_id, class_type, instructor}
3 {user_id, class_type, instructor} {user_id, class_type, instructor}
4 {user_id, class_type, instructor} {user_id, class_type, instructor}
I would expect the same behaviour here - do you know what I am missing?
OK what is happening here is that set
isn't being handled as it's not is_list_like
in _aggregate
:
elif is_list_like(arg) and arg not in compat.string_types:
see source
this isn't is_list_like
so it returns None
up the call chain to end up at this line:
results.append(colg.aggregate(a))
see source
this raises TypeError
as TypeError: 'type' object is not iterable
which then raises:
if not len(results):
raise ValueError("no results")
see source
so because we have no results we end up calling _aggregate_generic
:
see source
this then calls:
result[name] = self._try_cast(func(data, *args, **kwargs)
see source
This then ends up as:
(Pdb) n
> c:\programdata\anaconda3\lib\site-packages\pandas\core\groupby.py(3779)_aggregate_generic()
-> return self._wrap_generic_output(result, obj)
(Pdb) result
{1: {'user_id', 'instructor', 'class_type'}, 2: {'user_id', 'instructor', 'class_type'}, 3: {'user_id', 'instructor', 'class_type'}, 4: {'user_id', 'instructor', 'class_type'}}
I'm running a slightly different version of pandas but the equivalent source line is https://github.com/pandas-dev/pandas/blob/v0.22.0/pandas/core/groupby.py#L3779
So essentially because set
doesn't count as a function or an iterable, it just collapses to calling the ctor on the series iterable which in this case are the columns, you can see the same effect here:
In [8]:
df.groupby('user_id').agg(lambda x: print(set(x.columns)))
{'class_type', 'instructor', 'user_id'}
{'class_type', 'instructor', 'user_id'}
{'class_type', 'instructor', 'user_id'}
{'class_type', 'instructor', 'user_id'}
Out[8]:
class_type instructor
user_id
1 None None
2 None None
3 None None
4 None None
but when you use the lambda
which is an anonymous function this works as expected.
Perhaps as @Edchum commented agg
applies the python builtin functions considering the groupby object as a mini dataframe, whereas when a defined function is passed it applies it for every column. An example to illustrate this is via print.
df.groupby('user_id').agg(print,end='\n\n')
class_type instructor user_id
0 Krav Maga Bob 1
4 Ju-jitsu Alice 1
class_type instructor user_id
1 Yoga Alice 2
5 Krav Maga Alice 2
class_type instructor user_id
2 Ju-jitsu Bob 3
6 Karate Bob 3
df.groupby('user_id').agg(lambda x : print(x,end='\n\n'))
0 Krav Maga
4 Ju-jitsu
Name: class_type, dtype: object
1 Yoga
5 Krav Maga
Name: class_type, dtype: object
2 Ju-jitsu
6 Karate
Name: class_type, dtype: object
3 Krav Maga
Name: class_type, dtype: object
...
Hope this is the reason why applying set gave the result like the one mentioned above.