Follow-up question to [Does casting to a pointer to a template instantiate that template?].
The question is just as the title says, with the rest of the question being constraints and usage examples of the class template, aswell as my tries to achieve the goal.
An important constraint: The user instantiates the template by subclassing my class template (and not through explicitly instantiating it like in my tries below). As such, it is important to me that, if possible, the user doesn't need to do any extra work. Just subclassing and it should work (the subclass actually registers itself in a dictionary already without the user doing anything other than subclassing an additional class template with CRTP and the subclass is never directly used by the user who created it). I am willing to accept answers where the user needs to do extra work however (like deriving from an additional base), if there really is no other way.
A code snippet to explain how the class template is going to be used:
// the class template in question
template<class Resource>
struct loader
{
typedef Resource res_type;
virtual res_type load(std::string const& path) const = 0;
virtual void unload(res_type const& res) const = 0;
};
template<class Resource, class Derived>
struct implement_loader
: loader<Resource>
, auto_register_in_dict<Derived>
{
};
template<class Resource>
Resource load(std::string const& path){
// error should be triggered here
check_loader_instantiated_with<Resource>();
// search through resource cache
// ...
// if not yet loaded, load from disk
// loader_dict is a mapping from strings (the file extension) to loader pointers
auto loader_dict = get_all_loaders_for<Resource>();
auto loader_it = loader_dict.find(get_extension(path))
if(loader_it != loader_dict.end())
return (*loader_it)->load(path);
// if not found, throw some exception saying that
// no loader for that specific file extension was found
}
// the above code comes from my library, the code below is from the user
struct some_loader
: the_lib::implement_loader<my_fancy_struct, some_loader>
{
// to be called during registration of the loader
static std::string extension(){ return "mfs"; }
// override the functions and load the resource
};
And now in tabular form:
- User calls
the_lib::load<my_fancy_struct>
with a resource path - Inside
the_lib::load<my_fancy_struct>
, if the resource identified by the path isn't cached already, I load it from disk - The specific
loader
to be used in this case is created at startup time and saved in a dictionary - There is a dictionary for every resource type, and they map [file extension ->
loader
pointer] - If the dictionary is empty, the user either
- didn't create a loader for that specific extension or
- didn't create a loader for that specific resource
- I only want the first case to have me throw a runtime exception
- The second case should be detected at compile / link time, since it involves templates
Rationale: I'm heavily in favor of early errors and if possible I want to detect as many errors as possible before runtime, i.e. at compile and link time. Since checking if a loader for that resource exists would only involve templates, I hope it's possible to do this.
The goal in my tries: Trigger a linker error on the call to check_error<char>
.
// invoke with -std=c++0x on Clang and GCC, MSVC10+ already does this implicitly
#include <type_traits>
// the second parameter is for overload resolution in the first test
// literal '0' converts to as well to 'void*' as to 'foo<T>*'
// but it converts better to 'int' than to 'long'
template<class T>
void check_error(void*, long = 0);
template<class T>
struct foo{
template<class U>
friend typename std::enable_if<
std::is_same<T,U>::value
>::type check_error(foo<T>*, int = 0){}
};
template struct foo<int>;
void test();
int main(){ test(); }
Given the above code, the following test
definition does achieve the goal for MSVC, GCC 4.4.5 and GCC 4.5.1:
void test(){
check_error<int>(0, 0); // no linker error
check_error<char>(0, 0); // linker error for this call
}
However, it should not do that, as passing a null pointer does not trigger ADL. Why is ADL needed? Because the standard says so:
§7.3.1.2 [namespace.memdef] p3
[...] If a
friend
declaration in a nonlocal class first declares a class or function the friend class or function is a member of the innermost enclosing namespace. The name of the friend is not found by unqualified lookup or by qualified lookup until a matching declaration is provided in that namespace scope (either before or after the class definition granting friendship). [...]
Triggering ADL through a cast, as in the following definition of test
, achieves the goal on Clang 3.1 and GCC 4.4.5, but GCC 4.5.1 already links fine, as does MSVC10:
void test(){
check_error<int>((foo<int>*)0);
check_error<char>((foo<char>*)0);
}
Sadly, GCC 4.5.1 and MSVC10 have the correct behaviour here, as discussed in the linked question and specifically this answer.