The documentation of std::hypot
says that:
Computes the square root of the sum of the squares of x and y, without undue overflow or underflow at intermediate stages of the computation.
I struggle to conceive a test case where std::hypot
should be used over the trivial sqrt(x*x + y*y)
.
The following test shows that std::hypot
is roughly 20x slower than the naive calculation.
#include <iostream>
#include <chrono>
#include <random>
#include <algorithm>
int main(int, char**) {
std::mt19937_64 mt;
const auto samples = 10000000;
std::vector<double> values(2 * samples);
std::uniform_real_distribution<double> urd(-100.0, 100.0);
std::generate_n(values.begin(), 2 * samples, [&]() {return urd(mt); });
std::cout.precision(15);
{
double sum = 0;
auto s = std::chrono::steady_clock::now();
for (auto i = 0; i < 2 * samples; i += 2) {
sum += std::hypot(values[i], values[i + 1]);
}
auto e = std::chrono::steady_clock::now();
std::cout << std::fixed <<std::chrono::duration_cast<std::chrono::microseconds>(e - s).count() << "us --- s:" << sum << std::endl;
}
{
double sum = 0;
auto s = std::chrono::steady_clock::now();
for (auto i = 0; i < 2 * samples; i += 2) {
sum += std::sqrt(values[i]* values[i] + values[i + 1]* values[i + 1]);
}
auto e = std::chrono::steady_clock::now();
std::cout << std::fixed << std::chrono::duration_cast<std::chrono::microseconds>(e - s).count() << "us --- s:" << sum << std::endl;
}
}
So I'm asking for guidance, when must I use std::hypot(x,y)
to obtain correct results over the much faster std::sqrt(x*x + y*y)
.
Clarification: I'm looking for answers that apply when x
and y
are floating point numbers. I.e. compare:
double h = std::hypot(static_cast<double>(x),static_cast<double>(y));
to:
double xx = static_cast<double>(x);
double yy = static_cast<double>(y);
double h = std::sqrt(xx*xx + yy*yy);