This question already has an answer here:
-
What is an intuitive explanation of the Expectation Maximization technique? [closed]
8 answers
Could anyone provide a simple numeric example of the EM algorithm as I am not sure about the formulas given? A really simple one with 4 or 5 Cartesian coordinates would perfectly do.
what about this:
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/Expectation_Maximization_(EM)#A_simple_example
I had also written a simple example in (edit)R a year ago, unfortunately I am unable to locate it. I'll try again to find it later.
EDIT: Here it is -
EM <- function()
{
### Read file, get necessary cols
dataFile <- read.csv("wine.csv", head = FALSE, sep = ",")
sl <- dataFile[, 2]
#sw <- dataFile[, 3]
#pl <- dataFile[, 3]
#pw <- dataFile[, 4]
class <- dataFile[, 5]
N <- length(sl)
pi1 <- 0.5
### Init ###
rand1 <- floor(runif(1) * N)
rand2 <- floor(runif(1) * N)
mu1 <- sl[rand1]
mu2 <- sl[rand2]
mean1 <- sum(sl)/N
sigma1 <- sum( (sl - mean1) ** 2) / N
sigma2 <- sigma1
print(mu1)
print(mu2)
print(sigma1)
print(sigma2)
COUNTLIM <- 10
count <- 1
prevmu1 <- 0.0;
prevmu2 <- 0.0;
prevsigma1 <- 0.0;
prevsigma2 <- 0.0;
gamma <- array(0, length(sl))
while (count <= COUNTLIM)
{
gamma <- pi1 * dnorm(sl, mu2, sigma2)/ ( (1 - pi1) * dnorm(sl, mu1, sigma1) + pi1 * dnorm(sl, mu2, sigma2))
mu1 <- sum((1 - gamma) * sl) / sum(1 - gamma)
mu2 <- sum((gamma) * sl) / sum(gamma)
sigma1 <- sum((1 - gamma) * (sl - mu1) ** 2)/sum(1 - gamma)
sigma2 <- sum((gamma) * (sl - mu2) ** 2)/sum(gamma)
pi1 <- sum(gamma)/N
print(c(mu1, mu2, sigma1, sigma2, pi1))
if (count == 1)
{
prevmu1 <- mu1;
prevmu2 <- mu2;
prevsigma1 <- sigma1;
prevsigma2 <- sigma2;
}
else
{
val <- ((prevmu1 - mu1)*2 + (prevmu2 - mu2)*2 + (prevsigma1 - sigma1)*2 + (prevsigma2 - sigma2)*2) ** 0.5;
print(c("val: " , val))
if (val <= 1)
{
break;
}
}
count <- count + 1
}
print(mu1)
print(mu2)
print(sigma1)
print(sigma2)
}