I call a webservice, that gives me back a response xml that has UTF-8 encoding. I checked that in java using getAllHeaders()
method.
Now, in my java code, I take that response and then do some processing on it. And later, pass it on to a different service.
Now, I googled a bit and found out that by default the encoding in Java for strings is UTF-16.
In my response xml, one of the elements had a character É. Now this got screwed in the post processing request that I make to a different service.
Instead of sending É, it sent some jibberish stuff. Now I wanted to know, will there be really a lot of difference in the two of these encodings? And if I wanted to know what will É convert from UTF-8 to UTF-16, then how can I do that?
Thanks
Both UTF-8 and UTF-16 are variable length encodings. However, in UTF-8 a character may occupy a minimum of 8 bits, while in UTF-16 character length starts with 16 bits.
Main UTF-8 pros:
- Basic ASCII characters like digits, Latin characters with no
accents, etc. occupy one byte which is identical to US-ASCII
representation. This way all US-ASCII strings become valid UTF-8,
which provides decent backwards compatibility in many cases.
- No null bytes, which allows to use null-terminated strings, this
introduces a great deal of backwards compatibility too.
Main UTF-8 cons:
- Many common characters have different length, which slows indexing
and calculating a string length terribly.
Main UTF-16 pros:
- Most reasonable characters, like Latin, Cyrillic, Chinese, Japanese
can be represented with 2 bytes. Unless really exotic characters are
needed, this means that the 16-bit subset of UTF-16 can be used as a
fixed-length encoding, which speeds indexing.
Main UTF-16 cons:
- Lots of null bytes in US-ASCII strings, which means no
null-terminated strings and a lot of wasted memory.
In general, UTF-16 is usually better for in-memory representation while UTF-8 is extremely good for text files and network protocol
There are two things:
- the encoding in which you exchange data;
- the internal string representation of Java.
You should not be preoccupied with the second point ;) The thing is to use the appropriate methods to convert from your data (byte arrays) to String
s (char
arrays ultimately), and to convert form String
s to your data.
The most basic classes you can think of are CharsetDecoder
and CharsetEncoder
. But there are plenty others. String.getBytes()
, all Reader
s and Writer
s are but two possible methods. And there are all static methods of Character
as well.
If you see gibberish at some point, it means you failed to decode or encode from the original byte data to Java strings. But again, the fact that Java strings use UTF-16 is not relevant here.
In particular, you should be aware that when you create a Reader
or Writer
, you should specify the encoding; if you fail to do so, the default JVM encoding will be used, and it may, or may not, be UTF-8.
This Website provide UTF TO UTF Conversion
http://www.fileformat.info/convert/text/utf2utf.htm
UTF-32 is arguably the most human-readable of the Unicode Encoding Forms, because its big-endian hexadecimal representation is simply the Unicode Scalar Value without the “U+” prefix and zero-padded to eight digits and While a UTF-32 representation does make the programming model somewhat simpler, the increased average storage size has real drawbacks, making a complete transition to UTF-32 less compelling.
HOWEVER
UTF-32 is the same as the old UCS-4 encoding and remains fixed width. Why can this remain fixed width? As UTF-16 is now the format that can encode the least amount of characters it set the limit for all formats. It was defined that 1,112,064 was the total number of code points that will ever be defined by either Unicode or ISO 10646. Since Unicode is now only defined from 0 to 10FFFF UTF-32 sounds a bit like a pointless encoding now as it's 32 bit wide, but only ever about 21 bits are used which makes this very wasteful.