Is there a way, using SFINAE, to detect whether a free function is overloaded for a given class?
Basically, I’ve got the following solution:
struct has_no_f { };
struct has_f { };
void f(has_f const& x) { }
template <typename T>
enable_if<has_function<T, f>::value, int>::type call(T const&) {
std::cout << "has f" << std::endl;
}
template <typename T>
disable_if<has_function<T, f>::value, int>::type call(T const&) {
std::cout << "has no f" << std::endl;
}
int main() {
call(has_no_f()); // "has no f"
call(has_f()); // "has f"
}
Simply overloading call
doesn’t work since there are actually a lot of foo
and bar
types and the call
function has no knowledge of them (basically call
is inside a and the users supply their own types).
I cannot use C++0x, and I need a working solution for all modern compilers.
Note: the solution to a similar question unfortunately doesn’t work here.
#include <iostream>
#include <vector>
#include <algorithm>
#include <utility>
#include <functional>
#include <type_traits>
struct X {};
struct Y {};
__int8 f(X x) { return 0; }
__int16 f(...) { return 0; }
template <typename T> typename std::enable_if<sizeof(f(T())) == sizeof(__int8), int>::type call(T const& t) {
std::cout << "In call with f available";
f(t);
return 0;
}
template <typename T> typename std::enable_if<sizeof(f(T())) == sizeof(__int16), int>::type call(T const& t) {
std::cout << "In call without f available";
return 0;
}
int main() {
Y y; X x;
call(y);
call(x);
}
A quick modification of the return types of f() yields the traditional SFINAE solution.
If boost
is allowed, the following code might meet your purpose:
#include <boost/type_traits.hpp>
#include <boost/utility/enable_if.hpp>
using namespace boost;
// user code
struct A {};
static void f( A const& ) {}
struct B {};
// code for has_f
static void f(...); // this function has to be a free standing one
template< class T >
struct has_f {
template< class U >
static char deduce( U(&)( T const& ) );
template< class U, class V >
static typename disable_if_c< is_same< V, T >::value, char(&)[2] >::type
deduce( U(&)( V const& ) );
static char (&deduce( ... ))[2];
static bool const value = (1 == sizeof deduce( f ));
};
int main()
{
cout<< has_f<A>::value <<endl;
cout<< has_f<B>::value <<endl;
}
However, there are severe restrictions.
The code assumes that all the user functions have the signature ( T const& )
,
so ( T )
isn't allowed.
The function void f(...)
in the above seems to need to be a free standing
function.
If the compiler enforces two phase look-up as expected normally, probably
all the user functions have to appear before the definition of has_f
class
template.
Honestly, I'm not confident of the usefulness of the code, but anyway I hope
this helps.