Is there a general way to convert between a measure of similarity and a measure of distance?
Consider a similarity measure like the number of 2-grams that two strings have in common.
2-grams('beta', 'delta') = 1
2-grams('apple', 'dappled') = 4
What if I need to feed this to an optimization algorithm that expects a measure of difference, like Levenshtein distance?
This is just an example...I'm looking for a general solution, if one exists. Like how to go from Levenshtein distance to a measure of similarity?
I appreciate any guidance you may offer.
Let d denotes distance, s denotes similarity. To convert distance measure to similarity measure, we need to first normalize d to [0 1], by using d_norm = d/max(d). Then the similarity measure is given by:
s = 1 - d_norm.
where s is in the range [0 1], with 1 denotes highest similarity (the items in comparison are identical), and 0 denotes lowest similarity (largest distance).
If your similarity measure (s) is between 0 and 1, you can use one of these:
1-s
sqrt(1-s)
-log(s)
(1/s)-1
Doing 1/similarity is not going to keep the properties of the distribution.
the best way is
distance (a->b) = highest similarity - similarity (a->b).
with highest similarity being the similarity distance with the biggest value. You hence flip your distribution.
the highest similarity becomes 0 etc
similarity = 1/difference
and watch out for difference = 0
In the case of Levenshtein distance, you could increase the sim score by 1 for every time the sequences match; that is, 1 for every time you didn't need a deletion, insertion or substitution. That way the metric would be a linear measure of how many characters the two strings have in common.
In one of my projects (based on Collaborative Filtering) I had to convert between correlation (cosine between vectors) which was from -1 to 1 (closer 1 is more similar, closer to -1 is more diverse) to normalized distance (close to 0 the distance is smaller and if it's close to 1 the distance is bigger)
In this case: distance ~ diversity
My formula was: dist = 1 - (cor + 1)/2
If you have similarity to diversity and the domain is [0,1] in both cases the simlest way is:
dist = 1 - sim
sim = 1 - dist
Cosine similarity is widely used for n-gram count or TFIDF vectors.
from math import pi, acos
def similarity(x, y):
return sum(x[k] * y[k] for k in x if k in y) / sum(v**2 for v in x.values())**.5 / sum(v**2 for v in y.values())**.5
Cosine similarity can be used to compute a formal distance metric according to wikipedia. It obeys all the properties of a distance that you would expect (symmetry, nonnegativity, etc):
def distance_metric(x, y):
return 1 - 2 * acos(similarity(x, y)) / pi
Both of these metrics range between 0 and 1.
If you have a tokenizer that produces N-grams from a string you could use these metrics like this:
>>> import Tokenizer
>>> tokenizer = Tokenizer(ngrams=2, lower=True, nonwords_set=set(['hello', 'and']))
>>> from Collections import Counter
>>> list(tokenizer('Hello World again and again?'))
['world', 'again', 'again', 'world again', 'again again']
>>> Counter(tokenizer('Hello World again and again?'))
Counter({'again': 2, 'world': 1, 'again again': 1, 'world again': 1})
>>> x = _
>>> Counter(tokenizer('Hi world once again.'))
Counter({'again': 1, 'world once': 1, 'hi': 1, 'once again': 1, 'world': 1, 'hi world': 1, 'once': 1})
>>> y = _
>>> sum(x[k]*y[k] for k in x if k in y) / sum(v**2 for v in x.values())**.5 / sum(v**2 for v in y.values())**.5
0.42857142857142855
>>> distance_metric(x, y)
0.28196592805724774
I found the elegant inner product of Counter
in this SO answer