I am trying to process JSON events received in a mobile app (like clicks etc.) using spark 1.5.2
. There are multiple app versions and the structure of the events varies across versions.
Say version 1 has the following structure:
{
"timestamp": "",
"ev": {
"app": {
"appName": "XYZ",
"appVersion": "1.2.0"
}
"device": {
"deviceId": "ABC",
...
}
...
}
}
And another version has the following structure:
{
"timestamp": "",
"ev": {
"_a": {
"name": "XYZ",
"version": "1.3.0"
}
"_d": {
"androidId": "ABC",
...
}
...
}
}
I want to be able to create a single dataframe for both the structure and perform some queries.
I am creating two different dataframes for each structure using the filter
function. Now I need to be able to able rename the columns to perform union operation on the two dataframes.
I am using:
df.withColumnRenamed("ev.app", "ev._a").withColumnRenamed("ev.device", "ev._d");
But this does not work. How do I achieve this?
If it's just about renaming nested columns and not about changing schema structure, then replacing a DataFrame schema (re-creating DataFrame with new schema) would work just fine.
object functions {
private def processField(structField: StructField, fullColName: String, oldColName: String, newColName: String): StructField = {
if (fullColName.equals(oldColName)) {
new StructField(newColName, structField.dataType, structField.nullable)
} else if (oldColName.startsWith(fullColName)) {
new StructField(structField.name, processType(structField.dataType, fullColName, oldColName, newColName), structField.nullable)
} else {
structField
}
}
private def processType(dataType: DataType, fullColName: String, oldColName: String, newColName: String): DataType = {
dataType match {
case structType: StructType =>
new StructType(structType.fields.map(
f => processField(f, if (fullColName == null) f.name else s"${fullColName}.${f.name}", oldColName, newColName)))
case other => other
}
}
implicit class ExtDataFrame(df: DataFrame) {
def renameNestedColumn(oldColName: String, newColName: String): DataFrame = {
df.sqlContext.createDataFrame(df.rdd, processType(df.schema, null, oldColName, newColName).asInstanceOf[StructType])
}
}
}
Usage:
scala> import functions._
import functions._
scala> df.printSchema
root
|-- geo_info: struct (nullable = true)
| |-- city: string (nullable = true)
| |-- country_code: string (nullable = true)
| |-- state: string (nullable = true)
| |-- region: string (nullable = true)
scala> df.renameNestedColumn("geo_info.country_code", "country").printSchema
root
|-- geo_info: struct (nullable = true)
| |-- city: string (nullable = true)
| |-- country: string (nullable = true)
| |-- state: string (nullable = true)
| |-- region: string (nullable = true)
This implementation is recursive, so it should handle cases like this as well:
df.renameNestedColumn("a.b.c.d.e.f", "bla")
Given two messages M1
and M2
like
case class Ev1(app1: String)
case class M1(ts: String, ev1: Ev1)
case class Ev2(app2: String)
case class M2(ts: String, ev2: Ev2)
and two data frames df1
(which contains M1
), and df2
(containing M2
), both data frames registered as temp tables, then you can use QL:
val merged = sqlContext.sql(
"""
|select
| df1.ts as ts,
| named_struct('app', df1.ev1.app1) as ev
| from
| df1
|
|union all
|
|select
| df2.ts as ts,
| named_struct('app', df2.ev2.app2) as ev
| from
| df2
""".stripMargin)
- Use
as
to give the same names
- Use
named_struct
to build compatible nested structs on-the fly
- Use
union all
to put it all together
Not shown in the example, but functions like collect_list
might be useful as well.