What would be a good way to detect a C++ memory leak in an embedded environment? I tried overloading the new operator to log every data allocation, but I must have done something wrong, that approach isn't working. Has anyone else run into a similar situation?
This is the code for the new and delete operator overloading.
EDIT:
Full disclosure: I am looking for a memory leak in my program and I am using this code that someone else wrote to overload the new and delete operator. Part of my problem is the fact that I don't fully understand what it does. I know that the goal is to log the address of the caller and previous caller, the size of the allocation, a 1 if we are allocating, a 2 if we are deallocation. plus the name of the thread that is running.
Thanks for all the suggestions, I am going to try a different approach that someone here at work suggested. If it works, I will post it here.
Thanks again to all you first-rate programmers for taking the time to answer.
StackOverflow rocks!
Conclusion
Thanks for all the answers. Unfortunately, I had to move on to a different more pressing issue. This leak only occurred under a highly unlikely scenario. I feel crappy about just dropping it, I may go back to it if I have more time. I chose the answer I am most likely to use.
#include <stdlib.h>
#include "stdio.h"
#include "nucleus.h"
#include "plus/inc/dm_defs.h"
#include "plus/inc/pm_defs.h"
#include "posix\inc\posix.h"
extern void* TCD_Current_Thread;
extern "C" void rd_write_text(char * text);
extern PM_PCB * PMD_Created_Pools_List;
typedef struct {
void* addr;
uint16_t size;
uint16_t flags;
} MemLogEntryNarrow_t;
typedef struct {
void* addr;
uint16_t size;
uint16_t flags;
void* caller;
void* prev_caller;
void* taskid;
uint32_t timestamp;
} MemLogEntryWide_t;
//size lookup table
unsigned char MEM_bitLookupTable[] = {
0,1,1,2,1,2,2,3,1,2,2,3,1,3,3,4
};
//#pragma CODE_SECTION ("section_ramset1_0")
void *::operator new(unsigned int size)
{
asm(" STR R14, [R13, #0xC]"); //save stack address temp[0]
asm(" STR R13, [R13, #0x10]"); //save pc return address temp[1]
if ( loggingEnabled )
{
uint32_t savedInterruptState;
uint32_t currentIndex;
// protect the thread unsafe section.
savedInterruptState = NU_Local_Control_Interrupts(NU_DISABLE_INTERRUPTS);
// Note that this code is FRAGILE. It peeks backwards on the stack to find the return
// address of the caller. The location of the return address on the stack can be easily changed
// as a result of other changes in this function (i.e. adding local variables, etc).
// The offsets may need to be adjusted if this function is touched.
volatile unsigned int temp[2];
unsigned int *addr = (unsigned int *)temp[0] - 1;
unsigned int count = 1 + (0x20/4); //current stack space ***
//Scan for previous store
while ((*addr & 0xFFFF0000) != 0xE92D0000)
{
if ((*addr & 0xFFFFF000) == 0xE24DD000)
{
//add offset in words
count += ((*addr & 0xFFF) >> 2);
}
addr--;
}
count += MEM_bitLookupTable[*addr & 0xF];
count += MEM_bitLookupTable[(*addr >>4) & 0xF];
count += MEM_bitLookupTable[(*addr >> 8) & 0xF];
count += MEM_bitLookupTable[(*addr >> 12) & 0xF];
addr = (unsigned int *)temp[1] + count;
// FRAGILE CODE ENDS HERE
currentIndex = currentMemLogWriteIndex;
currentMemLogWriteIndex++;
if ( memLogNarrow )
{
if (currentMemLogWriteIndex >= MEMLOG_SIZE/2 )
{
loggingEnabled = false;
rd_write_text( "Allocation Logging is complete and DISABLED!\r\n\r\n");
}
// advance the read index if necessary.
if ( currentMemLogReadIndex == currentMemLogWriteIndex )
{
currentMemLogReadIndex++;
if ( currentMemLogReadIndex == MEMLOG_SIZE/2 )
{
currentMemLogReadIndex = 0;
}
}
NU_Local_Control_Interrupts(savedInterruptState);
//Standard operator
//(For Partition Analysis we have to consider that if we alloc size of 0 always as size of 1 then are partitions must be optimized for this)
if (size == 0) size = 1;
((MemLogEntryNarrow_t*)memLog)[currentIndex].size = size;
((MemLogEntryNarrow_t*)memLog)[currentIndex].flags = 1; //allocated
//Standard operator
void * ptr;
ptr = malloc(size);
((MemLogEntryNarrow_t*)memLog)[currentIndex].addr = ptr;
return ptr;
}
else
{
if (currentMemLogWriteIndex >= MEMLOG_SIZE/6 )
{
loggingEnabled = false;
rd_write_text( "Allocation Logging is complete and DISABLED!\r\n\r\n");
}
// advance the read index if necessary.
if ( currentMemLogReadIndex == currentMemLogWriteIndex )
{
currentMemLogReadIndex++;
if ( currentMemLogReadIndex == MEMLOG_SIZE/6 )
{
currentMemLogReadIndex = 0;
}
}
((MemLogEntryWide_t*)memLog)[currentIndex].caller = (void *)(temp[0] - 4);
((MemLogEntryWide_t*)memLog)[currentIndex].prev_caller = (void *)*addr;
NU_Local_Control_Interrupts(savedInterruptState);
((MemLogEntryWide_t*)memLog)[currentIndex].taskid = (void *)TCD_Current_Thread;
((MemLogEntryWide_t*)memLog)[currentIndex].size = size;
((MemLogEntryWide_t*)memLog)[currentIndex].flags = 1; //allocated
((MemLogEntryWide_t*)memLog)[currentIndex].timestamp = *(volatile uint32_t *)0xfffbc410; // for arm9
//Standard operator
if (size == 0) size = 1;
void * ptr;
ptr = malloc(size);
((MemLogEntryWide_t*)memLog)[currentIndex].addr = ptr;
return ptr;
}
}
else
{
//Standard operator
if (size == 0) size = 1;
void * ptr;
ptr = malloc(size);
return ptr;
}
}
//#pragma CODE_SECTION ("section_ramset1_0")
void ::operator delete(void *ptr)
{
uint32_t savedInterruptState;
uint32_t currentIndex;
asm(" STR R14, [R13, #0xC]"); //save stack address temp[0]
asm(" STR R13, [R13, #0x10]"); //save pc return address temp[1]
if ( loggingEnabled )
{
savedInterruptState = NU_Local_Control_Interrupts(NU_DISABLE_INTERRUPTS);
// Note that this code is FRAGILE. It peeks backwards on the stack to find the return
// address of the caller. The location of the return address on the stack can be easily changed
// as a result of other changes in this function (i.e. adding local variables, etc).
// The offsets may need to be adjusted if this function is touched.
volatile unsigned int temp[2];
unsigned int *addr = (unsigned int *)temp[0] - 1;
unsigned int count = 1 + (0x20/4); //current stack space ***
//Scan for previous store
while ((*addr & 0xFFFF0000) != 0xE92D0000)
{
if ((*addr & 0xFFFFF000) == 0xE24DD000)
{
//add offset in words
count += ((*addr & 0xFFF) >> 2);
}
addr--;
}
count += MEM_bitLookupTable[*addr & 0xF];
count += MEM_bitLookupTable[(*addr >>4) & 0xF];
count += MEM_bitLookupTable[(*addr >> 8) & 0xF];
count += MEM_bitLookupTable[(*addr >> 12) & 0xF];
addr = (unsigned int *)temp[1] + count;
// FRAGILE CODE ENDS HERE
currentIndex = currentMemLogWriteIndex;
currentMemLogWriteIndex++;
if ( memLogNarrow )
{
if ( currentMemLogWriteIndex >= MEMLOG_SIZE/2 )
{
loggingEnabled = false;
rd_write_text( "Allocation Logging is complete and DISABLED!\r\n\r\n");
}
// advance the read index if necessary.
if ( currentMemLogReadIndex == currentMemLogWriteIndex )
{
currentMemLogReadIndex++;
if ( currentMemLogReadIndex == MEMLOG_SIZE/2 )
{
currentMemLogReadIndex = 0;
}
}
NU_Local_Control_Interrupts(savedInterruptState);
// finish logging the fields. these are thread safe so they dont need to be inside the protected section.
((MemLogEntryNarrow_t*)memLog)[currentIndex].addr = ptr;
((MemLogEntryNarrow_t*)memLog)[currentIndex].size = 0;
((MemLogEntryNarrow_t*)memLog)[currentIndex].flags = 2; //unallocated
}
else
{
((MemLogEntryWide_t*)memLog)[currentIndex].caller = (void *)(temp[0] - 4);
((MemLogEntryWide_t*)memLog)[currentIndex].prev_caller = (void *)*addr;
if ( currentMemLogWriteIndex >= MEMLOG_SIZE/6 )
{
loggingEnabled = false;
rd_write_text( "Allocation Logging is complete and DISABLED!\r\n\r\n");
}
// advance the read index if necessary.
if ( currentMemLogReadIndex == currentMemLogWriteIndex )
{
currentMemLogReadIndex++;
if ( currentMemLogReadIndex == MEMLOG_SIZE/6 )
{
currentMemLogReadIndex = 0;
}
}
NU_Local_Control_Interrupts(savedInterruptState);
// finish logging the fields. these are thread safe so they dont need to be inside the protected section.
((MemLogEntryWide_t*)memLog)[currentIndex].addr = ptr;
((MemLogEntryWide_t*)memLog)[currentIndex].size = 0;
((MemLogEntryWide_t*)memLog)[currentIndex].flags = 2; //unallocated
((MemLogEntryWide_t*)memLog)[currentIndex].taskid = (void *)TCD_Current_Thread;
((MemLogEntryWide_t*)memLog)[currentIndex].timestamp = *(volatile uint32_t *)0xfffbc410; // for arm9
}
//Standard operator
if (ptr != NULL) {
free(ptr);
}
}
else
{
//Standard operator
if (ptr != NULL) {
free(ptr);
}
}
}