How to calculate time complexity for these backtracking algorithms and do they have same time complexity? If different how? Kindly explain in detail and thanks for the help.
1. Hamiltonian cycle:
bool hamCycleUtil(bool graph[V][V], int path[], int pos) {
/* base case: If all vertices are included in Hamiltonian Cycle */
if (pos == V) {
// And if there is an edge from the last included vertex to the
// first vertex
if ( graph[ path[pos-1] ][ path[0] ] == 1 )
return true;
else
return false;
}
// Try different vertices as a next candidate in Hamiltonian Cycle.
// We don't try for 0 as we included 0 as starting point in in hamCycle()
for (int v = 1; v < V; v++) {
/* Check if this vertex can be added to Hamiltonian Cycle */
if (isSafe(v, graph, path, pos)) {
path[pos] = v;
/* recur to construct rest of the path */
if (hamCycleUtil (graph, path, pos+1) == true)
return true;
/* If adding vertex v doesn't lead to a solution, then remove it */
path[pos] = -1;
}
}
/* If no vertex can be added to Hamiltonian Cycle constructed so far, then return false */
return false;
}
2. Word break:
a. bool wordBreak(string str) {
int size = str.size();
// Base case
if (size == 0)
return true;
// Try all prefixes of lengths from 1 to size
for (int i=1; i<=size; i++) {
// The parameter for dictionaryContains is str.substr(0, i)
// str.substr(0, i) which is prefix (of input string) of
// length 'i'. We first check whether current prefix is in
// dictionary. Then we recursively check for remaining string
// str.substr(i, size-i) which is suffix of length size-i
if (dictionaryContains( str.substr(0, i) ) && wordBreak( str.substr(i, size-i) ))
return true;
}
// If we have tried all prefixes and none of them worked
return false;
}
b. String SegmentString(String input, Set<String> dict) {
if (dict.contains(input)) return input;
int len = input.length();
for (int i = 1; i < len; i++) {
String prefix = input.substring(0, i);
if (dict.contains(prefix)) {
String suffix = input.substring(i, len);
String segSuffix = SegmentString(suffix, dict);
if (segSuffix != null) {
return prefix + " " + segSuffix;
}
}
}
return null;
}
3. N Queens:
bool solveNQUtil(int board[N][N], int col) {
/* base case: If all queens are placed then return true */
if (col >= N)
return true;
/* Consider this column and try placing this queen in all rows one by one */
for (int i = 0; i < N; i++) {
/* Check if queen can be placed on board[i][col] */
if ( isSafe(board, i, col) ) {
/* Place this queen in board[i][col] */
board[i][col] = 1;
/* recur to place rest of the queens */
if ( solveNQUtil(board, col + 1) == true )
return true;
/* If placing queen in board[i][col] doesn't lead to a solution then remove queen from board[i][col] */
board[i][col] = 0; // BACKTRACK
}
}
}
I am actually confused a bit, as for Word Break(b) the complexity is O(2n) but for Hamiltonian cycle its different and so does for printing different permutations of the same string and then again for solving n queens problem.